已知數(shù)列滿(mǎn)足,,則的值為
A.B.C.D.
A
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195910766657.png" style="vertical-align:middle;" />,所以,,,所以數(shù)列是周期為3的周期數(shù)列,則,故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

) (本題滿(mǎn)分14分) 設(shè)等差數(shù)列{an}的首項(xiàng)a1a,前n項(xiàng)和為Sn
(Ⅰ) 若S1,S2S4成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 證明:n∈N*, SnSn1,Sn2不構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列,且滿(mǎn)足的值為
A.bB.b—aC.—bD.—a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分16分)定義,…,的“倒平均數(shù)”為).已知數(shù)列項(xiàng)的“倒平均數(shù)”為,記).
(1)比較的大;
(2)設(shè)函數(shù),對(duì)(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立?若存在,求出最大的實(shí)數(shù);若不存在,說(shuō)明理由.
(3)設(shè)數(shù)列滿(mǎn)足),),且是周期為的周期數(shù)列,設(shè)項(xiàng)的“倒平均數(shù)”,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)已知數(shù)列的前項(xiàng)和為,且與2的等差中項(xiàng),數(shù)列中,,點(diǎn)在直線(xiàn)上.
⑴求的值;
⑵求數(shù)列的通項(xiàng);
⑶ 設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知函數(shù)是自然對(duì)數(shù)的底數(shù))

(1)求的最小值;
(2)不等式的解集為P,  若  
求實(shí)數(shù)的取值范圍;
(3)已知,是否存在等差數(shù)列和首項(xiàng)為公比大于0的等比數(shù)列,使數(shù)列的前n項(xiàng)和等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的前項(xiàng)和,對(duì)于任意的,都滿(mǎn)足,
,則等于(    )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在數(shù)列中,若,且對(duì)任意的正整數(shù)都有
的值為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義:若數(shù)列對(duì)任意的正整數(shù)n,都有d為常數(shù)),則稱(chēng)為“絕對(duì)和數(shù)列”,d叫做“絕對(duì)公和”,已知“絕對(duì)和數(shù)列”,“絕對(duì)公和”,則其前2010項(xiàng)和的最小值為                 

查看答案和解析>>

同步練習(xí)冊(cè)答案