8.已知雙曲線${C_1}:\frac{x^2}{4}-{y^2}=1$,雙曲線${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,M是雙曲線C2的一條漸近線上的點(diǎn),且OM⊥MF2,O為坐標(biāo)原點(diǎn),若${S_{△OM{F_2}}}=16$,且雙曲線C1,C2的離心率相同,則雙曲線C2的實(shí)軸長是( 。
A.32B.16C.8D.4

分析 求得雙曲線C1的離心率,求得雙曲線C2一條漸近線方程為y=$\frac{a}$x,運(yùn)用點(diǎn)到直線的距離公式,結(jié)合勾股定理和三角形的面積公式,化簡整理解方程可得a=8,進(jìn)而得到雙曲線的實(shí)軸長.

解答 解:雙曲線${C_1}:\frac{x^2}{4}-{y^2}=1$的離心率為$\frac{\sqrt{5}}{2}$,
設(shè)F2(c,0),雙曲線C2一條漸近線方程為y=$\frac{a}$x,
可得|F2M|=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b,
即有|OM|=$\sqrt{{c}^{2}-^{2}}$=a,
由${S_{△OM{F_2}}}=16$,可得$\frac{1}{2}$ab=16,
即ab=32,又a2+b2=c2,且$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,
解得a=8,b=4,c=4$\sqrt{5}$,
即有雙曲線的實(shí)軸長為16.
故選:B.

點(diǎn)評 本題考查雙曲線的方程和性質(zhì),注意運(yùn)用點(diǎn)到直線的距離公式和離心率公式,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,空間四邊形OABC中,E,F(xiàn)分別為OA,BC的中點(diǎn),設(shè)$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c,試用a,b,c表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等腰直角三角形ABC中,AB=AC=4,點(diǎn)P是邊AB上異于A,B的一點(diǎn),光線從點(diǎn)P出發(fā),經(jīng)BC,CA發(fā)射后又回到原點(diǎn)P(如圖11).若光線QR經(jīng)過△ABC的重心,則BP等于(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知正方形的中心為(0,-1),其中一條邊所在的直線方程為3x+y-2=0.求其他三條邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在矩形ABCD中,AB=2,AD=1,點(diǎn)P為矩形ABCD內(nèi)一點(diǎn),則使得$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=(x+b)lnx,g(x)=alnx+$\frac{1-a}{2}{x^2}$-x(a≠1),已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y=0垂直.
(1)求b的值;
(2)若對任意x≥1,都有g(shù)(x)>$\frac{a}{a-1}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法中正確的是(  )
A.經(jīng)過不同的三點(diǎn)有且只有一個(gè)平面
B.沒有公共點(diǎn)的兩條直線一定平行
C.垂直于同一平面的兩直線是平行直線
D.垂直于同一平面的兩平面是平行平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(α)=sinα•cosα.
(1)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值;
(2)若α=-$\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線的方程為$\frac{x^2}{9}-\frac{y^2}{16}=1$,則此雙曲線的實(shí)軸長為6.

查看答案和解析>>

同步練習(xí)冊答案