【題目】班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班名男同學(xué), 名女同學(xué)中隨機(jī)抽取一個(gè)容量為的樣本進(jìn)行分析.

(1)如果按性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(只要求寫出計(jì)算式即可,不必計(jì)算出結(jié)果)

(2)隨機(jī)抽取位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是: ,物理分?jǐn)?shù)從小到大排序是: .

①若規(guī)定分以上(包括分)為優(yōu)秀,求這位同學(xué)中恰有位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;

②若這位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實(shí)上對(duì)應(yīng)如下表:

根據(jù)上表數(shù)據(jù),由變量的相關(guān)系數(shù)可知物理成績(jī)與數(shù)學(xué)成績(jī)之間具有較強(qiáng)的線性相關(guān)關(guān)系,現(xiàn)求的線性回歸方程(系數(shù)精確到).

參考公式:回歸直線的方程是: ,其中對(duì)應(yīng)的回歸估計(jì)值

參考數(shù)據(jù): , ,, ,.

【答案】(1);(2)①;②線性回歸方程是.

【解析】(1)先求男女生數(shù),再借助組合數(shù)公式求解;(2)先求樣本總數(shù),再借助古典概型計(jì)算公式求解

(1)應(yīng)選女生 ,男生 ,則不同樣本個(gè)數(shù)為

(2)①總樣本數(shù)為 ,恰有3位數(shù)學(xué)與物理均為優(yōu)秀有 個(gè)事件數(shù),所以概率為

②設(shè)的線性回歸方程是,根據(jù)所給數(shù)據(jù),可以計(jì)算出

,所以的線性回歸方程是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1在,,分別為線段、的中點(diǎn),為折痕,折起到圖2的位置,使平面⊥平面連接設(shè)是線段上的動(dòng)點(diǎn)滿足

(1)證明:平面⊥平面;

(2)若二面角的大小為的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線方程為,點(diǎn)拋物線到直線距離最小點(diǎn),點(diǎn)拋物線上異于點(diǎn)點(diǎn),直線直線于點(diǎn),過點(diǎn)平行的直線與拋物線于點(diǎn).

點(diǎn)坐標(biāo);

)證明直線定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對(duì)價(jià)格(單位:千元/噸)和利潤(rùn)的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:

(1)求關(guān)于的線性回歸方程;

(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)取到最大值?(結(jié)果保留兩位小數(shù))

參考公式: ,

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為27,9,18,先采用分層抽樣的方法從這三個(gè)協(xié)會(huì)中抽取6名運(yùn)動(dòng)員參加比賽.

)求應(yīng)從這三個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員人數(shù);

)將抽取的6名運(yùn)動(dòng)員進(jìn)行編號(hào),編號(hào)分別為,從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.

)用所給編號(hào)列出所有可能的結(jié)果;

)設(shè)為事件編號(hào)為的兩名運(yùn)動(dòng)員至少有一人被抽到,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖“月亮圖”是由曲線構(gòu)成,曲線是以原點(diǎn)為中點(diǎn), 為焦點(diǎn)的橢圓的一部分,曲線是以為頂點(diǎn), 為焦點(diǎn)的拋物線的一部分, 是兩條曲線的一個(gè)交點(diǎn).

(Ⅰ)求曲線的方程;

(Ⅱ)過作一條與軸不垂直的直線,分別與曲線依次交于四點(diǎn),若的中點(diǎn), 的中點(diǎn),問: 是否為定值?若是求出該定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

(2)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體中,分別為的中點(diǎn).

(1)求證:平面⊥平面;

(2)當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),是否都有平面,證明你的結(jié)論;

(3)若的中點(diǎn),求所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

)記的極小值為,求的最大值;

)若對(duì)任意實(shí)數(shù)恒有,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案