分析 根據(jù)平面向量的坐標(biāo)運(yùn)算,利用共線定理,列出方程求出k的值.
解答 解:∵$\overrightarrow{PA}=(k\;,\;12)$,$\overrightarrow{PB}=(4\;,\;5)$,$\overrightarrow{PC}=(10\;,\;k)$,
∴$\overrightarrow{AB}$=(4-k,-7),$\overrightarrow{BC}$=(6,k-5);
又$\overrightarrow{AB}$與$\overrightarrow{BC}$共線,
∴(4-k)(k-5)-(-7)×6=0,
即k2-9k-22=0,
解得k=-2或k=11;
∴當(dāng)k=-2或11時(shí),點(diǎn)A,B,C共線.
故答案為:-2或11.
點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算與共線定理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1<x<4} | B. | {x|-2<x<-1或4<x<5} | C. | {x|x<-1或x>4} | D. | {x|-2<x<5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{8\sqrt{3}}}{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -$\frac{3}{2}$ | C. | -1 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com