分析 (I)根據(jù)曲線(xiàn)的解析式求出導(dǎo)函數(shù),把P的橫坐標(biāo)代入導(dǎo)函數(shù)中即可求出切線(xiàn)的斜率,根據(jù)P的坐標(biāo)和求出的斜率寫(xiě)出切線(xiàn)的方程即可;
(II)設(shè)函數(shù)h(x)=f(x)-g(x),這個(gè)函數(shù)有幾個(gè)零點(diǎn)就說(shuō)明有幾個(gè)根.然后利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,并求出函數(shù)的最值,討論最值的取值范圍確定函數(shù)零點(diǎn)的個(gè)數(shù)即可求根的個(gè)數(shù).
解答 解:(Ⅰ)∵g′(x)=$\frac{-2x}{({x}^{2}-1)^{2}}$,∴g′($\sqrt{2}$)=-2$\sqrt{2}$且g($\sqrt{2}$)=1+a
故g(x)在點(diǎn)P($\sqrt{2}$,g($\sqrt{2}$)))處的切線(xiàn)方程為2$\sqrt{2}$x+y-5-a=0
(Ⅱ)令h(x)=f(x)-g(x)=ln(x2+1)-$\frac{1}{{x}^{2}-1}$-ah′(x)=$\frac{2x}{1+{x}^{2}}$+$\frac{2x}{({x}^{2}-1)^{2}}$.
x∈[0,1)∪(1,+∞)時(shí)h′(x)>0 x∈(-∞,-1)∪(-1,0)時(shí),h′(x)<0,
因此h(x)(-∞,-1),(-1,0)時(shí)h(x)單調(diào)遞減,[0,1),(1,+∞)時(shí)h(x)單調(diào)遞增.h(x)為偶函數(shù),
x∈(-1,1)時(shí)h(x)極小值h(0)=1-a
f(x)=g(x)的根的情況為:
1-a>0時(shí),a<1時(shí),原方程有2個(gè)根;
1-a=0時(shí),a=1時(shí),原方程有3個(gè)根;
1-a<0時(shí),a>1時(shí),原方程有4個(gè)根.
點(diǎn)評(píng) 此題考查學(xué)生會(huì)利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)的切線(xiàn)方程,本題考查利用導(dǎo)函數(shù)來(lái)研究函數(shù)的極值.在利用導(dǎo)函數(shù)來(lái)研究函數(shù)的極值時(shí),分三步①求導(dǎo)函數(shù),②求導(dǎo)函數(shù)為0的根,③判斷根左右兩側(cè)的符號(hào),若左正右負(fù),原函數(shù)取極大值;若左負(fù)右正,原函數(shù)取極小值.此題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,培養(yǎng)學(xué)生分類(lèi)討論的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{18π}{5}$ | B. | $\frac{24π}{5}$ | C. | $\frac{21π}{5}$ | D. | $-\frac{41π}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-5,5) | B. | (-12,12) | C. | (-13,13) | D. | (-15,15) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com