【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E為BC1的中點(diǎn),則DE與面BCC1B1所成角的正切值為(

A.
B.
C.
D.

【答案】C
【解析】解:設(shè)正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為2,
以D為原點(diǎn),以DA為x軸,以DC為y軸,
以DD1為z軸,建立空直角坐標(biāo)系,
∵E為BC1的中點(diǎn),
∴D(0,0,0),E(1,2,1),
=(1,2,1),
設(shè)DE與面BCC1B1所成角的平面角為θ,
∵面BCC1B1的法向量 ,
∴sinθ=|cos< >|=| |=
∴cosθ= = ,
∴tanθ= =
故選:C.

【考點(diǎn)精析】關(guān)于本題考查的空間角的異面直線所成的角,需要了解已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系 xOy 中,圓錐曲線 C 的參數(shù)方程為 為參數(shù)),定點(diǎn) , F1,F2 是圓錐曲線 C 的左,右焦點(diǎn).
(1)以原點(diǎn)為極點(diǎn)、 x 軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn) F1 且平行于直線AF2 的直線 l 的極坐標(biāo)方程;
(2)在(1)的條件下,設(shè)直線 l 與圓錐曲線 C 交于 E,F 兩點(diǎn),求弦 EF 的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四棱錐P-ABCD的底面不是平行四邊形,用平面去截此四棱錐,使得截面是平行四邊形,則這樣的平面( )
A.不存在
B.有且只有1個(gè)
C.恰好有4個(gè)
D.有無數(shù)多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)的圖象與函數(shù) 的圖象關(guān)于y軸對(duì)稱,則φ的值可以為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知acosB﹣c=
(1)求角A的大。
(2)若b﹣c= ,a=3+ ,求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線 =1(a,b>0)的右焦點(diǎn)F作一條漸近線的垂線,垂足為P,線段OP的垂直平分線交y軸于點(diǎn)Q(其中O為坐標(biāo)原點(diǎn)).若△OFP的面積是△OPQ的面積的4倍,則該雙曲線的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,已知a1= ,an+1=
(1)證明:an<an+1 ;
(2)證明:當(dāng)n≥2時(shí),( <2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)為B(0,1),B到焦點(diǎn)的距離為2.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P,Q是橢圓上異于點(diǎn)B的任意兩點(diǎn),且BP⊥BQ,線段PQ的中垂線l與x軸的交點(diǎn)為(x0 , 0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為(x﹣3)2+y2=1,圓M的方程為(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),過M上任意一點(diǎn)P作圓C的兩條切線PA,PB,切點(diǎn)分別為A、B,則∠APB的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案