【題目】已知函數(shù)若方程有四個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是
A. B. C. D.
【答案】B
【解析】
解法一:把方程有四個(gè)實(shí)數(shù)根,轉(zhuǎn)化為函數(shù)與圖像有四個(gè)不同的交點(diǎn).分別求得當(dāng)時(shí),函數(shù)單調(diào)性與極值和當(dāng)時(shí),函數(shù)單調(diào)性與極值,作出圖象,結(jié)合圖象即可求解;
解法二:由方程等價(jià)于,轉(zhuǎn)化為與圖像有四個(gè)交點(diǎn),令,分別求得當(dāng)和時(shí),函數(shù)的單調(diào)性與極值,結(jié)合圖象,即可求解.
解法一:方程有四個(gè)實(shí)數(shù)根,
等價(jià)于與圖像有四個(gè)不同的交點(diǎn).
當(dāng)時(shí), 解得.
當(dāng), 單調(diào)遞增,
當(dāng)時(shí), 單調(diào)遞減,所以極大值為
當(dāng)時(shí),當(dāng)時(shí),
當(dāng)時(shí),,解得(舍正),
當(dāng)時(shí), 單調(diào)遞增,
當(dāng)時(shí), 單調(diào)遞減,所以極大值為
當(dāng)時(shí),當(dāng)時(shí),
作出函數(shù)的草圖,如圖:
①若 與不可能有四個(gè)交點(diǎn);
②若 與有三個(gè)交點(diǎn);
③若當(dāng)與相切時(shí),
設(shè)切點(diǎn)為則,即
解得,兩圖像要有四個(gè)交點(diǎn),則.
綜上實(shí)數(shù)的取值范圍是,故選B.
解法二:由于,方程等價(jià)于,
即依題意與圖像有四個(gè)交點(diǎn).
令,
當(dāng), 得.
當(dāng)時(shí) 單調(diào)遞增,當(dāng)時(shí), 單調(diào)遞減,
當(dāng)時(shí),當(dāng)時(shí),
又當(dāng)時(shí),得,
當(dāng)時(shí), 單調(diào)遞減,
當(dāng)時(shí), 單調(diào)遞增,極小值為,
當(dāng)時(shí),當(dāng)時(shí),
所以與圖像有四個(gè)交點(diǎn)時(shí) 故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知p:函數(shù)f(x)在R上是增函數(shù),f(m2)<f(m+2)成立;q:方程1(m∈R)表示雙曲線.
(1)若p為真命題,求m的取值范圍;
(2)若p∨q為真,p∧q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是古希臘數(shù)學(xué)家阿基米德用平衡法求球的體積所用的圖形.此圖由正方形、半徑為的圓及等腰直角三角形構(gòu)成,其中圓內(nèi)切于正方形,等腰三角形的直角頂點(diǎn)與的中點(diǎn)重合,斜邊在直線上.已知為的中點(diǎn),現(xiàn)將該圖形繞直線旋轉(zhuǎn)一周,則陰影部分旋轉(zhuǎn)后形成的幾何體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】血藥濃度(Serum Drug Concentration)是指藥物吸收后在血漿內(nèi)的總濃度(單位:mg/ml),通常用血藥濃度來研究藥物的作用強(qiáng)度.下圖為服用同等劑量的三種新藥后血藥濃度的變化情況,其中點(diǎn)的橫坐標(biāo)表示服用第種藥后血藥濃度達(dá)到峰值時(shí)所用的時(shí)間,其它點(diǎn)的橫坐標(biāo)分別表示服用三種新藥后血藥濃度第二次達(dá)到峰值一半時(shí)所用的時(shí)間(單位:h),點(diǎn)的縱坐標(biāo)表示第種藥的血藥濃度的峰值.()
①記為服用第種藥后達(dá)到血藥濃度峰值時(shí),血藥濃度提高的平均速度,則中最大的是_______;
②記為服用第種藥后血藥濃度從峰值降到峰值的一半所用的時(shí)間,則中最大的是_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測(cè)驗(yàn)中,某班40名考生的成績(jī)滿分100分統(tǒng)計(jì)如圖所示.
(Ⅰ)估計(jì)這40名學(xué)生的測(cè)驗(yàn)成績(jī)的中位數(shù)精確到0.1;
(Ⅱ)記80分以上為優(yōu)秀,80分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有95%的把握認(rèn)為數(shù)學(xué)測(cè)驗(yàn)成績(jī)與性別有關(guān)?
合格 | 優(yōu)秀 | 合計(jì) | |
男生 | 16 | ||
女生 | 4 | ||
合計(jì) | 40 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“愛國,是人世間最深層、最持久的情感,是一個(gè)人立德之源、立功之本。”在中華民族幾千年綿延發(fā)展的歷史長(zhǎng)河中,愛國主義始終是激昂的主旋律。愛國汽車公司擬對(duì)“東方紅”款高端汽車發(fā)動(dòng)機(jī)進(jìn)行科技改造,根據(jù)市場(chǎng)調(diào)研與模擬,得到科技改造投入(億元)與科技改造直接收益(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:
2 | 3 | 4 | 6 | 8 | 10 | 13 | 21 | 22 | 23 | 24 | 25 | |
13 | 22 | 31 | 42 | 50 | 56 | 58 | 68.5 | 68 | 67.5 | 66 | 66 |
當(dāng)時(shí),建立了與的兩個(gè)回歸模型:模型①:;模型②:;當(dāng)時(shí),確定與滿足的線性回歸方程為:.
(1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)時(shí)模型①、②的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)對(duì)“東方紅”款汽車發(fā)動(dòng)機(jī)科技改造的投入為17億元時(shí)的直接收益.
回歸模型 | 模型① | 模型② |
回歸方程 | ||
182.4 | 79.2 |
(附:刻畫回歸效果的相關(guān)指數(shù),.)
(2)為鼓勵(lì)科技創(chuàng)新,當(dāng)科技改造的投入不少于20億元時(shí),國家給予公司補(bǔ)貼收益10億元,以回歸方程為預(yù)測(cè)依據(jù),比較科技改造投入17億元與20億元時(shí)公司實(shí)際收益的大;
(附:用最小二乘法求線性回歸方程的系數(shù)公式 ;)
(3)科技改造后,“東方紅”款汽車發(fā)動(dòng)機(jī)的熱效大幅提高,服從正態(tài)分布,公司對(duì)科技改造團(tuán)隊(duì)的獎(jiǎng)勵(lì)方案如下:若發(fā)動(dòng)機(jī)的熱效率不超過,不予獎(jiǎng)勵(lì);若發(fā)動(dòng)機(jī)的熱效率超過但不超過,每臺(tái)發(fā)動(dòng)機(jī)獎(jiǎng)勵(lì)2萬元;若發(fā)動(dòng)機(jī)的熱效率超過,每臺(tái)發(fā)動(dòng)機(jī)獎(jiǎng)勵(lì)5萬元.求每臺(tái)發(fā)動(dòng)機(jī)獲得獎(jiǎng)勵(lì)的數(shù)學(xué)期望.
(附:隨機(jī)變量服從正態(tài)分布,則,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)的圖象與直線交于兩點(diǎn),線段中點(diǎn)的橫坐標(biāo)為,證明:(為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com