【題目】己知p:函數(shù)fx)在R上是增函數(shù),fm2)<fm+2)成立;q:方程1mR)表示雙曲線.

1)若p為真命題,求m的取值范圍;

2)若pq為真,pq為假,求m的取值范圍.

【答案】(1) 1m2(2) (﹣1,0][2,3).

【解析】

1)根據(jù)增函數(shù)的定義即可求出m的取值范圍

2)由pq為真,pq為假可得有兩種情況:①pq假,②pq

1)己知命題p:函數(shù)fx)在R上是增函數(shù),fm2)<fm+2)成立;

所以m2m+2,解得﹣1m2

2)已知命題q:方程1mR)表示雙曲線.

所以mm3)<0,解得0m3

由于pq為真,pq為假,

所以①pq假,則,解得﹣1m≤0

pq真,則,解得2≤m3,

綜上所述:m的取值范圍是(﹣1,0][2,3).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),且曲線上的點對應(yīng)的參數(shù),以為極點,軸的正半軸為極軸建立極坐標系.

(1)求曲線的普通方程和極坐標方程;

(2)若曲線上的兩點滿足,過于點,求證:點在以為圓心的定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自201611日起,我國全面二孩政策正式實施,這次人口與生育政策的歷史性調(diào)整,使得要不要再生一個,生二孩能休多久產(chǎn)假等問題成為千千萬萬個家庭在生育決策上避不開的話題.為了解針對產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機構(gòu)隨機抽取了200戶有生育二胎能力的適齡家庭進行問卷調(diào)查,得到如下數(shù)據(jù):

產(chǎn)假安排(單位:周)

14

15

16

17

18

有生育意愿家庭數(shù)

4

8

16

20

26

1)若用表中數(shù)據(jù)所得的頻率代替概率,面對產(chǎn)假為14周與16周,估計某家庭有生育意愿的概率分別為多少?

2)假設(shè)從5種不同安排方案中,隨機抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.

求兩種安排方案休假周數(shù)和不低于32周的概率;

如果用表示兩種方案休假周數(shù)之和.求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ,其中R …為自然對數(shù)的底數(shù)

)當時, 恒成立,求的取值范圍;

)求證: (參考數(shù)據(jù): )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,下頂點為,橢圓的離心率是,的面積是.

1)求橢圓的標準方程.

2)直線與橢圓交于兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:及點P(0,1),過點P的直線與圓交于A、B兩點.

(1)若弦長求直線AB的斜率;

(2)求△ABC面積的最大值,及此時弦長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,過點作垂直于軸的直線與拋物線交于兩點,且以線段為直徑的圓過點.

(1)求拋物線的方程;

(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是動點,以為直徑的圓與圓內(nèi)切.

(1)求的軌跡的方程;

(2)設(shè)是圓軸的交點,過點的直線與交于兩點,直線交直線于點,求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)若方程有四個不等的實數(shù)根,則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

同步練習冊答案