【題目】某電信運營公司為響應國家5G網(wǎng)絡建設政策,擬實行5G網(wǎng)絡流量階梯定價.每人月用流量中不超過(一種流量計算單位)的部分按2收費;超出的部分按4收費.從用戶群中隨機調查了10000位用戶,獲得了他們某月的流量使用數(shù)據(jù).整理得到如下的頻率分布直方圖:

1)若為整數(shù),依據(jù)本次調查,為使80以上用戶在該月的流量價格為2,至少定為多少?

2)假設同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當時,試估計用戶該月的人均流量費.

【答案】1至少定為32

【解析】

1)由頻率分布直方圖計算概率,即可容易求得結果;

2)由頻率分布直方圖計算平均數(shù)即可容易求得.

1)由直方圖可知,用戶所用流量在區(qū)間,,,

內的頻率依次是0.1,0.150.2,0.250.15,

所以該月所用流量不超過的用戶占,所用流量不超過的用戶占,

至少定為3;

2)由所用流量的頻率分布圖及題意,用戶該月的人均流量費用估計為:

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)當時,求的切線方程;

2)若對任意時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)2|x1||x2|.

(1)f(x)的最小值m;

(2)ab,c均為正實數(shù),且滿足abcm,求證:≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由個人依次出場解密,每人限定時間是分鐘內,否則派下一個人.個人中只要有一人解密正確,則認為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲次的測試記錄,繪制了如下的頻率分布直方圖.

1)若甲解密成功所需時間的中位數(shù)為,求的值,并求出甲在分鐘內解密成功的頻率;

2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.

求該團隊挑戰(zhàn)成功的概率;

該團隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=﹣x﹣cos2x+m(sinx﹣cosx)在(﹣∞,+∞)上單調遞減,則m的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的檢驗員為了檢測生產線上生產零件的情況,從產品中隨機抽取了個進行測量,根據(jù)所測量的數(shù)據(jù)畫出頻率分布直方圖如下:

如果:尺寸數(shù)據(jù)在內的零件為合格品,頻率作為概率.

(1)從產品中隨機抽取件,合格品的個數(shù)為,求的分布列與期望:

(2)為了提高產品合格率,現(xiàn)提出,兩種不同的改進方案進行試驗,若按方案進行試驗后,隨機抽取件產品,不合格個數(shù)的期望是:若按方案試驗后,抽取件產品,不合格個數(shù)的期望是,你會選擇哪個改進方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和滿足,數(shù)列滿足

求數(shù)列和數(shù)列的通項公式;

,若對于一切的正整數(shù)恒成立,求實數(shù)的取值范圍;

數(shù)列中是否存在,且 使,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(其中),.

1)若對定義域內的任意實數(shù)x恒成立,求實數(shù)a的取值范圍;

2)若有兩個極值點,,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),下列判斷正確的是( )

A. 有最大值和最小值

B. 的圖象的對稱中心為

C. 上存在單調遞減區(qū)間

D. 的圖象可由的圖象向左平移個單位而得

查看答案和解析>>

同步練習冊答案