如圖,已知正方體ABCD-A1B1C1D1棱長為2,E是線段B1C的中點(diǎn),分別以AB、AD、AA1為x、y、z軸建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,點(diǎn)E的坐標(biāo)是______.
由坐標(biāo)系可得:B1(2,0,2),C(2,2,0).
設(shè)E(x,y,z).由中點(diǎn)坐標(biāo)公式可得:
x=
2+2
2
y=
0+2
2
z=
2+0
2
,
解得x=2,y=1,z=1.
∴E(2,1,1).
故答案為:(2,1,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,函數(shù)f(x)=x+的定義域?yàn)?0,+∞).設(shè)點(diǎn)P是函數(shù)圖象上任一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M,N.

(1)證明:|PM|·|PN|為定值;
(2)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐S-ABCD中,已知ABCD,SA=SB,SC=SD,E、F分別為AB、CD的中點(diǎn).
(1)求證:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,求證:ABl.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A(1,2,-1)關(guān)于面xOy的對稱點(diǎn)為B,而B關(guān)于x軸的對稱點(diǎn)為C,則
BC
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間直角坐標(biāo)系中,點(diǎn)P(-2,4,4)關(guān)于x軸和坐標(biāo)原點(diǎn)的對稱點(diǎn)分別為P1和P2,則|P1P2|=(  )
A.4B.4
5
C.8D.8
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方體的棱長為1,求異面直線BD與的距離(    )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)一地球儀的球心為空間直角坐標(biāo)系的原點(diǎn),球面上有兩個點(diǎn)的坐標(biāo)分別為,則(      )
A.18B.12C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

上的動點(diǎn)到直線距離的最小值是   .

查看答案和解析>>

同步練習(xí)冊答案