【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標(biāo)準(zhǔn)(簡稱達標(biāo))的概率為.經(jīng)化驗檢測,若確認(rèn)達標(biāo)便可直接排放;若不達標(biāo)則必須進行B系統(tǒng)處理后直接排放.
某廠現(xiàn)有個標(biāo)準(zhǔn)水量的A級水池,分別取樣、檢測. 多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標(biāo),則混合樣本的化驗結(jié)果必不達標(biāo).若混合樣本不達標(biāo),則該組中各個樣本必須再逐個化驗;若混合樣本達標(biāo),則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若,求個A級水樣本混合化驗結(jié)果不達標(biāo)的概率;
(Ⅱ) 若,現(xiàn)有個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求的取值范圍.
【答案】(Ⅰ);(II)見解析;(III)見解析.
【解析】試題分析:(Ⅰ)根據(jù)所給相互獨立事件重復(fù)發(fā)生的概率為兩相互獨立事件概率乘積,及相互獨立事件的概率和為,可得結(jié)果;(Ⅱ)分別求出三種方案對應(yīng)分布列,進一步求出各自的期望值,比較期望值大小得最優(yōu)方案;(Ⅲ)分別求出期望值,利用期望大小關(guān)系建立關(guān)于的不等式,解得的取值范圍.
試題解析:(Ⅰ)該混合樣本達標(biāo)的概率是; 2分
所以根據(jù)對立事件原理,不達標(biāo)的概率為.
(II)方案一:逐個檢測,檢測次數(shù)為.
方案二:由(I)知,每組兩個樣本的檢測時,若達標(biāo)則檢測次數(shù)為,概率為;若不達標(biāo)則檢測次數(shù)為,概率為. 故方案二的檢測次數(shù), 可能取, , .概率分布列如下,
可求得方案二的期望為,
方案四:混在一起檢測,記檢測次數(shù)為, 可取, .概率分布列如下,
可求得方案四的期望為.
比較可得,故選擇方案四最“優(yōu)”.
(III)解:方案三:設(shè)化驗次數(shù), 可取, .
;
方案四:設(shè)化驗次數(shù), 可取, .
;
由題意得 .
故當(dāng)時,方案三比方案四更“優(yōu)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AB=2 ,AD=2 ,AA1=2,BC和A1C1所成的角=度 AA1和BC1所成的角=度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求點A到平面PBD的距離;
(3)求二面角A﹣PB﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 是的導(dǎo)函數(shù).
(1)若在處的切線方程為,求的值;
(2)若且在時取得最小值,求的取值范圍;
(3)在(1)的條件下,當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(﹣1,1),則函數(shù)g(x)=f( )+f(x﹣1)的定義域為( )
A.(﹣2,0)
B.(﹣2,2)
C.(0,2)
D.(﹣ ,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實數(shù)a的值;
(2)用定義證明函數(shù)f(x)在R上的單調(diào)性;
(3)若對任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面為菱形且, , 分別為和的中點, , , .
(Ⅰ)證明:直線∥平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= (x∈R),若f(x)滿足f(﹣x)=﹣f(x).
(1)求實數(shù)a的值;
(2)證明f(x)是R上的單調(diào)減函數(shù)(定義法).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在(﹣1,1)上的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com