13.如圖,直三棱柱ABC-DEF中,M是AB的中點(diǎn).
(1)證明:BF∥平面CDM;
(2)設(shè)$AD=AC=CB=2,AB=2\sqrt{2}$,求異面直線BF與DM所成角的大小.

分析 (1)連接AF,交于CD與G,連接MG,則G 為AF中點(diǎn),只要判定MG∥BF利用線面平行的判定定理可證;
(2)過G 作GH∥DM交MC與H,則H為MC的中點(diǎn),所以∠MGH為異面直線BF與DM所成角,借助于余弦定理求大小.

解答 (1)證明:連接AF,交于CD與G,連接MG,則G 為AF中點(diǎn),又M為AB中點(diǎn),所以MG∥BF,
MG?平面CDM,BF?平面CDM,
所以BF∥平面CDM;
(2)解:因?yàn)?AD=AC=CB=2,AB=2\sqrt{2}$,所以∠ACB為直角,MC=$\sqrt{2}$,過G 作GH∥DM交MC與H,則H為MC的中點(diǎn),所以∠MGH為異面直線BF與DM所成角,
在△MGH中,MG=$\frac{1}{2}$BF=$\sqrt{2}$,MH=$\frac{1}{2}$MC=$\frac{\sqrt{2}}{2}$,GH=$\frac{1}{2}DM$=$\frac{\sqrt{6}}{2}$,
由余弦定理得到異面直線BF與DM所成角的余弦值為$\frac{2+\frac{6}{4}-\frac{1}{2}}{2×\sqrt{2}×\frac{\sqrt{6}}{2}}=\frac{\sqrt{3}}{2}$,所以異面直線BF與DM所成角的為30°.

點(diǎn)評(píng) 本題考查了線面平行的判定定理和空間異面直線所成的角求法;關(guān)鍵是正確轉(zhuǎn)化線線關(guān)系和平面角解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“x<-1”是“$\frac{{{x^2}-1}}{x^2}>0$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知sinα-cosα=-$\frac{1}{5}({0≤α≤\frac{π}{4}})$,則cos2α的值是$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.e2ln2的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=ln(x-2)+ln(x+2)
(Ⅰ)求函數(shù)的定義域,值域;
(Ⅱ)判斷函數(shù)的單調(diào)性(要說明單調(diào)區(qū)間)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.恒過定點(diǎn)的直線mx-ny-m=0與拋物線y2=4x交于A,B,若m,n是從集合{-3,-2,-1,0,1,2,3}中取出的兩個(gè)不同元素,則使|AB|<8的不同取法有( 。
A.30種B.24種C.18種D.12種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{3,x≤0}\end{array}\right.$,則f(f(1))等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)+$\frac{{\sqrt{3}}}{2}$+a(其中ω>0,a∈R),f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)是$\frac{π}{6}$.且f(x)過點(diǎn)($\frac{5π}{6}$,$\sqrt{3}$).
(1)求ω和a的值;
(2)設(shè)g(x)=f(2x+$\frac{π}{3}$)-$\sqrt{3}$,求g(x)的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案