【題目】圓錐如圖①所示,圖②是它的正(主)視圖.已知圓的直徑為, 是圓周上異于的一點(diǎn), 的中點(diǎn).

(I)求該圓錐的側(cè)面積S;

(II)求證:平面⊥平面;

(III)若∠CAB=60°,在三棱錐中,求點(diǎn)到平面的距離.

【答案】1;2)參考解析;(3

【解析】試題分析:由圓錐的正視圖可知,圓錐的底面直徑為2,高為2,(1)所以圓錐的母線長,由圓錐的側(cè)面積公式.本小題的關(guān)鍵是應(yīng)用根據(jù)三視圖得到圓錐的半徑以及圓錐的高,從而運(yùn)用圓錐的側(cè)面積公式.

2)欲證平面PAC平面POD.由判定定理可知,轉(zhuǎn)化為線面垂直.通過觀察確定直線AC垂直平面PDO.由已知即可得到結(jié)論.

3)點(diǎn)A到平面PCB的距離,,利用,分別計(jì)算出.即可得到點(diǎn)A到平面PCB的距離.

試題解析:(1)由正(主)視圖可知圓錐的高,圓的直徑為,故半徑圓錐的母線長,

圓錐的側(cè)面積

2)證明:連接,, 的中點(diǎn),

, ,.又

.又,平面平面

3,又,利用等體積法可求出距離,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有關(guān)命題的說法錯(cuò)誤的是(

A.pq為假命題,則p、q均為假命題

B.x1”x23x+20”的充分不必要條件

C.命題x23x+20,則x1”的逆否命題為:x≠1,則x23x+2≠0”

D.對于命題px≥0,2x3,則¬Px0,2x≠3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x2=4y

(1)求拋物線在點(diǎn)P(2,1)處的切線方程;

(2)若不過原點(diǎn)的直線l與拋物線交于A,B兩點(diǎn)(如圖所示),且OAOB,|OA|=|OB|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)在圓柱的底面圓上,為圓的直徑.

(1)若圓柱的體積,,求異面直線所成的角(用反三角函數(shù)值表示結(jié)果);

(2)若圓柱的軸截面是邊長為2的正方形,四面體的外接球?yàn)榍?/span>,求兩點(diǎn)在球上的球面距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某避暑山莊擬對一個(gè)半徑為1百米的圓形地塊(如圖)進(jìn)行改造,擬在該地塊上修建一個(gè)等腰梯形,其中,圓心在梯形內(nèi)部,設(shè).當(dāng)該游泳池的面積與周長之比最大時(shí)為“最佳游泳池”.

(1)求梯形游泳池的面積關(guān)于的函數(shù)關(guān)系式,并指明定義域;

(2)求當(dāng)該游泳池為“最佳游泳池”時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)是定義在R上的單調(diào)函數(shù),若函數(shù)恰有個(gè)零點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司租用一個(gè)門店作展館,準(zhǔn)備對其公司生產(chǎn)的某型產(chǎn)品進(jìn)行為期一年的展出。為此,需對門店進(jìn)行裝修,展出結(jié)束,門店不再使用,現(xiàn)市面上有某品牌的型和型兩種節(jié)能燈,假定型節(jié)能燈使用壽命都超過小時(shí),經(jīng)銷商對型節(jié)能燈使用壽命進(jìn)行了調(diào)查統(tǒng)計(jì),得到如下頻率分布直方圖:

門店裝修時(shí),需安裝該品牌節(jié)能燈支(同種型號).經(jīng)了解,瓦和B型瓦的兩種節(jié)能燈照明效果相當(dāng),都適合安裝。已知型和型節(jié)能燈每支的價(jià)格分別為元、元,當(dāng)?shù)厣虡I(yè)電價(jià)為元/千瓦時(shí)。假定該店面一年周轉(zhuǎn)期的照明時(shí)間為小時(shí),若正常營業(yè)期間燈壞了立即購買同型燈管更換。(用頻率估計(jì)概率)

(1)根據(jù)頻率直方圖估算B型節(jié)能燈的平均使用壽命;

(2)根據(jù)統(tǒng)計(jì)知識,若一支燈管一年內(nèi)需要更換的概率為,那么支燈管一年內(nèi)估計(jì)需要更換支.若該商家新店面全部安裝型節(jié)能燈,試估計(jì)一年內(nèi)需更換的支數(shù);

(3)若只考慮燈的成本和消耗電費(fèi),你認(rèn)為該商家應(yīng)選擇哪種型號的節(jié)能燈,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年的政府工作報(bào)告強(qiáng)調(diào),要樹立綠水青山就是金山銀山理念,以前所未有的決心和力度加強(qiáng)生態(tài)環(huán)境保護(hù).某地科技園積極檢查督導(dǎo)園區(qū)內(nèi)企業(yè)的環(huán)保落實(shí)情況,并計(jì)劃采取激勵(lì)措施引導(dǎo)企業(yè)主動落實(shí)環(huán)保措施,下圖給出的是甲、乙兩企業(yè)2012年至2017年在環(huán)保方面投入金額(單位:萬元)的柱狀圖.

(Ⅰ)分別求出甲、乙兩企業(yè)這六年在環(huán)保方面投入金額的平均數(shù);(結(jié)果保留整數(shù))

(Ⅱ)園區(qū)管委會為盡快落實(shí)環(huán)保措施,計(jì)劃對企業(yè)進(jìn)行一定的獎(jiǎng)勵(lì),提出了如下方案:若企業(yè)一年的環(huán)保投入金額不超過200萬元,則該年不獎(jiǎng)勵(lì);若企業(yè)一年的環(huán)保投入金額超過200萬元,不超過300萬元,則該年獎(jiǎng)勵(lì)20萬元;若企業(yè)一年的環(huán)保投入金額超過300萬元,則該年獎(jiǎng)勵(lì)50萬元.

(ⅰ)分別求出甲、乙兩企業(yè)這六年獲得的獎(jiǎng)勵(lì)之和;

(ⅱ)現(xiàn)從甲企業(yè)這六年中任取兩年對其環(huán)保情況作進(jìn)一步調(diào)查,求這兩年獲得的獎(jiǎng)勵(lì)之和不低于70萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,為線段的中點(diǎn),為線段上的一點(diǎn).

(1)證明:平面平面.

(2)若,二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案