12.在△ABC中,若A-B>70°,且sinAcosB=$\frac{\sqrt{3}}{2}$+cosAsinB,試判斷△ABC的形狀.

分析 由已知利用兩角差的正弦函數(shù)公式可得cos(A-B)=$\frac{\sqrt{3}}{2}$,再求得范圍70°<A-B<180°,從而可得A=120°+B>90°,得解三角形ABC為鈍角三角形.

解答 解:∵sinAcosB=$\frac{\sqrt{3}}{2}$+cosAsinB,
∴sinAcosB-cosAsinB=cos(A-B)=$\frac{\sqrt{3}}{2}$,
∵0<A<180°,0<B<180°,A-B>70°,
∴70°<A-B<180°,
∴A-B=120°,即:A=120°+B>90°.
故三角形ABC為鈍角三角形.

點評 本題主要考查了兩角差的正弦函數(shù)公式,特殊角的三角函數(shù)值的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a=0.85.2,b=0.85.5,c=5.20.1,則這三個數(shù)的大小關(guān)系為( 。
A.b<a<cB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知圓x2+y2=1和圓(x+4)2+(y-a)2=25相切,則a=±2$\sqrt{5}$或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示的一塊長方體木料,E、F分別為底邊AB、BC的中點,經(jīng)過平面A1B1C1D1上一點P,畫一條直線與直線EF平行,應(yīng)該怎樣畫線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義在實數(shù)集R上的函數(shù)f(x)又f(x1+x2)=f(x1)+f(x2),且當(dāng)x>0時f(x)<0,f(2)=-1.
(1)求證:f(x)是在R上單調(diào)遞減的奇函數(shù);
(2)解不等式f(x2)-f(3x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若角α的終邊落在直線x+y=0上,則$\frac{sinα}{|cosα|}$+$\frac{|sinα|}{cosα}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知α,β∈(0,$\frac{π}{2}$),sinα=$\frac{3}{5}$,cos(α+β)=-$\frac{12}{13}$,則sinβ=$\frac{56}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)求證:2(1+cosα)-sin2α=4cos4$\frac{α}{2}$;
(2)若π<α<$\frac{3π}{2}$,證明$\frac{1+sinα}{\sqrt{1+cosα}-\sqrt{1-cosα}}$+$\frac{1-sinα}{\sqrt{1+cosα}+\sqrt{1-cosα}}$=-$\sqrt{2}$cos$\frac{α}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)我們知道,以原點為圓心,r為半徑的圓的方程是x2+y2=r2,那么$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$表示什么曲線?(其中r是正常數(shù),θ在[0,2π)內(nèi)變化)
(2)在直角坐標(biāo)系中,$\left\{\begin{array}{l}{x=a+rcosθ}\\{y=b+rsinθ}\end{array}\right.$,表示什么曲線?(其中a、b、r是常數(shù),且r為正數(shù),θ在[0,2π)內(nèi)變化)

查看答案和解析>>

同步練習(xí)冊答案