8.在△ABC中,角A、B、C所對的邊分別為a、b、c.已知a=2acosAcosB-2bsin2A.
(1)求C;
(2)若△ABC的面積為$\frac{{15\sqrt{3}}}{4}$,周長為 15,求c.

分析 (1)a=2acosAcosB-2bsin2A,利用正弦定理,即可求C;
(2)由△ABC的面積為$\frac{15\sqrt{3}}{4}$得ab=15,由余弦定理得a2+b2+ab=c2,又c=15-(a+b),即可求c.

解答 解:(1)由正弦定理可得
sinA=2sinAcosAcosB-2sinBsin2A…(2分)
=2sinA(cosAcosB-sinBsinA)=2sinAcos(A+B)=-2sinAcosC.
所以cosC=-$\frac{1}{2}$,故C=$\frac{2π}{3}$.…(6分)
(2)由△ABC的面積為$\frac{15\sqrt{3}}{4}$得ab=15,…(8分)
由余弦定理得a2+b2+ab=c2,又c=15-(a+b),
解得c=7.…(12分)

點評 本題考查正弦、余弦定理的運用,考查三角形面積的計算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.正四棱臺的上、下底面邊長分別為1cm,3cm,側(cè)棱長為2cm,則棱臺的側(cè)面積為( 。
A.4B.8C.4$\sqrt{3}$D.8$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}中,a1=1且$\frac{1}{{{a_{n+1}}}}$=$\frac{1}{a_n}$+1(n∈N*),則an=$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$C:\frac{x^2}{4}+{y^2}=1$,斜率為$\frac{{\sqrt{3}}}{2}$的動直線l與橢圓C交于不同的兩點A,B.
(1)設(shè)M為弦AB的中點,求動點M的軌跡方程;
(2)設(shè)F1,F(xiàn)2為橢圓C在左、右焦點,P是橢圓在第一象限上一點,滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-\frac{5}{4}$,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù) $f(x)={2^x}-\sqrt{x}-14$,若在區(qū)間(0,16)內(nèi)隨機取一個數(shù)x0,則f(x0)>0的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x),g(x)的定義域為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論正確的是( 。
A.f(x)•g(x)是偶函數(shù)B.f(x)+x2是奇函數(shù)C.f(x)-sinx是奇函數(shù)D.g(x)+2x是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知sinx+$\sqrt{3}$cosx=$\frac{8}{5}$,則sin(x+$\frac{π}{3}$)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)的定義域為[-1,5],在同一坐標系下,函數(shù)y=f(x)的圖象與直線x=1的交點個數(shù)為( 。
A.0個B.1個C.2個D.0個或者2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線C:y2=2x的焦點為F,A(x0,y0)是C上一點,|AF|=$\frac{3}{2}$x0,則x0=( 。
A.1B.2C.4D.8

查看答案和解析>>

同步練習冊答案