如果函數(shù)f(x)上存在兩個不同點A、B關于原點對稱,則稱A、B兩點為一對友好點,記作(A,B),規(guī)定(A,B)和(B,A)是同一對,已知f(x)=
|cosx|x≥0
-lg(-x)x<0
,則函數(shù)F(x)上共存在友好點(  )
A、1對B、3對C、5對D、7對
考點:函數(shù)與方程的綜合運用
專題:計算題,作圖題,函數(shù)的性質(zhì)及應用
分析:由題意,函數(shù)f(x)上的友好點的對數(shù)即方程|cosx|=lg(x),x>0的解的個數(shù),作圖象求解.
解答: 解:由題意,函數(shù)f(x)上的友好點的對數(shù)即方程|cosx|=lg(x),x>0的解的個數(shù);
故作函數(shù)y=|cosx|與函數(shù)y=lg(x)的圖象可得,

共有7個交點,
故共有7對,
故選D.
點評:本題考查了學生的接受能力與轉(zhuǎn)化能力,同時考查了學生的作圖能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
log2x+a,x>0
2x+a,x≤0
,若y=f(x)+x有且只有一個零點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,A1,A2是橢圓E的長軸的兩個端點(A2位于A1右側),B是橢圓在y軸正半軸上的頂點,點F是橢圓E的右焦點,點M是x軸上位于A2右側的一點,且滿足
1
|A1M|
+
1
|A2M|
=
2
|FM|
=2.
(1)求橢圓E的方程以及點M的坐標;
(2)是否存在經(jīng)過點(0,
2
)
且斜率為k的直線l與橢圓E交于不同的兩點P和Q,使得向量
OP
+
OQ
A2B
共線?如果存在,求出直線l的方程,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2-(a+1)x+a<O的解集是[-4,3]的子集,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2
3
sinωx,cos2ωx),
b
=(cosωx,-1)(ω>0)
,函數(shù)f(x)=
a
b
,且其圖象的兩條相鄰對稱軸之間的距離是
π
4

(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)f(x)圖象上的每一點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數(shù)g(x)的圖象,求y=g(x)在區(qū)間[0,
π
2
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角θ∈[
π
3
,π],則θ是銳角的概率為(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)列{an}的前n項和Sn滿足4Sn=(an+1)2
(Ⅰ)求a1,a2及{an}的通項公式;
(Ⅱ)令bn=2010-an,問數(shù)列{bn}的前多少項的和最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1,F(xiàn)2分別是橢圓x2+2y2=2的左、右焦點,點P是該橢圓上的一個動點,那么|
PF1
+
PF2
|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)滿足,f(x)=
1
3
x3-f′(1)•x2-x,則f(3)的值
 

查看答案和解析>>

同步練習冊答案