18.函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象如圖所示,其中A,B兩點(diǎn)之間的距離為5,則f(x)的解析式是( 。
A.y=2sin($\frac{π}{3}$x+$\frac{π}{6}$)B.y=2sin($\frac{π}{3}$x+$\frac{5π}{6}$)C.y=2sin($\frac{π}{2}$x+$\frac{π}{6}$)D.y=2sin($\frac{π}{2}$x+$\frac{5π}{6}$)

分析 由圖象得到振幅A,由A、B兩點(diǎn)的距離結(jié)合勾股定理求出B和A的橫坐標(biāo)的差,即半周期,然后求出ω,再由f(0)=1求φ的值,則解析式可求.

解答 解:由圖象可知,A=2.
又A,B兩點(diǎn)之間的距離為5,A,B兩點(diǎn)的縱坐標(biāo)的差為4,得函數(shù)的半個(gè)周期$\frac{T}{2}$=3,∴T=6.
則ω=$\frac{2π}{T}$=$\frac{2π}{6}$=$\frac{π}{3}$.
∴函數(shù)解析式為f(x)=2sin($\frac{π}{3}$x+φ).
由f(0)=1,得2sinφ=1,
∴sinφ=$\frac{1}{2}$.
又0≤φ≤π,
∴φ=$\frac{π}{6}$(舍去,(0,1)在單調(diào)遞減的區(qū)間上)或$\frac{5π}{6}$.
則f(x)的解析式是:f(x)=2sin($\frac{π}{3}$x+$\frac{5π}{6}$).
故選:B.

點(diǎn)評(píng) 本題考查了由函數(shù)y=Asin(ωx+φ)的部分圖象求函數(shù)解析式,正弦函數(shù)的圖象和性質(zhì),解決此類(lèi)問(wèn)題的方法是先由圖象看出振幅和周期,由周期求出ω,然后利用五點(diǎn)作圖的某一點(diǎn)求φ,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.復(fù)數(shù)Z=$\frac{2+ai}{1+i}$(a∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在虛軸上,則a=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,若$\overrightarrow{AB}=(2,-1),\overrightarrow{BC}=(-1,-1)$,則cos∠BAC的值等于$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某襯衫進(jìn)價(jià)為每件80元,零售價(jià)為每件100元,現(xiàn)每買(mǎi)一件送禮品一份進(jìn)行促銷(xiāo),若禮品為1元時(shí)銷(xiāo)售量增加10%;若禮品為2元時(shí),銷(xiāo)售量比禮品為1元時(shí)又增加10%;若禮品為3元時(shí),銷(xiāo)售量比禮品為2元時(shí)再增加10%;…,以此類(lèi)推.(1)試寫(xiě)出禮品為n元時(shí)(n≤20),盈利值f(n)的解析式;
(2)當(dāng)禮品為多少元時(shí)盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與y軸的正半軸相交于點(diǎn)M,點(diǎn)F1,F(xiàn)2為橢圓的焦點(diǎn),且△MF1F2是邊長(zhǎng)為2的等邊三角形,若直線(xiàn)l:y=kx+2$\sqrt{3}$與橢圓E交于不同的兩點(diǎn)A、B.
(1)直線(xiàn)MA,MB的斜率之積是否為定值;若是,請(qǐng)求出該定值.若不是.請(qǐng)說(shuō)明理由.
(2)求△ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),右焦點(diǎn)F($\sqrt{2}$,0),點(diǎn)D($\sqrt{2}$,1)在橢圓上
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線(xiàn)l:y=kx與橢圓C交于A,B兩點(diǎn),P為橢圓C上異于A,B的動(dòng)點(diǎn);若直線(xiàn)PA,PB的斜率都存在,判斷kPA•kPB是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=$\frac{2x-a}{x-1}$的反函數(shù)的圖象經(jīng)過(guò)點(diǎn)(3,2),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.經(jīng)市場(chǎng)調(diào)查,某商品每噸的價(jià)格為x(1<x<14)百元時(shí),該商品的月供給量為y1萬(wàn)噸,y1=ax+$\frac{7}{2}$a2-a(a>0);月需求量為y2萬(wàn)噸,y2=-$\frac{1}{224}$x2-$\frac{1}{112}$x+1.當(dāng)該商品的需求量大于供給量時(shí),銷(xiāo)售量等于供給量;當(dāng)該商品的需求量不大于供給量時(shí),銷(xiāo)售量等于需求量.該商品的月銷(xiāo)售額等于月銷(xiāo)售量與價(jià)格的乘積.
(1)若a=$\frac{1}{7}$,問(wèn)商品的價(jià)格為多少時(shí),該商品的月銷(xiāo)售額最大?
(2)記需求量與供給量相等時(shí)的價(jià)格為均衡價(jià)格,若該商品的均衡價(jià)格不低于每噸6百元,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在平面直角坐標(biāo)系中,過(guò)原點(diǎn)O的直線(xiàn)l與曲線(xiàn)y=ex-2交于不同的兩點(diǎn)A、B,分別過(guò)A、B作x軸的垂線(xiàn),與曲線(xiàn)y=lnx交于點(diǎn)C、D,則直線(xiàn)CD的斜率為( 。
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案