【題目】已知雙曲線=1(a>0,b>0)的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于AB兩點,F1為左焦點.

(1)求雙曲線的方程;

(2)若△F1AB的面積等于6,求直線l的方程.

【答案】(1) (2)

【解析】

(1)依題意,b,2a1c2,雙曲線的方程為:x21.

(2)設(shè)A(x1,y1)B(x2,y2),F2(2,0),直線lyk(x2),

消元得(k23)x24k2x4k230,

k≠±時,x1x2x1x2,y1y2k(x1x2),

△F1AB的面積S

2|k|·12|k|·6k48k290,k21,k±1,所以直線l的方程為y±(x2)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解放軍某部在實兵演練對抗比賽中,紅、藍(lán)兩個小組均派6人參加實彈射擊,其所得成績的莖葉圖如圖所示.
(1)根據(jù)射擊數(shù)據(jù),計算紅、藍(lán)兩個小組射擊成績的均值與方差,并說明紅軍還是藍(lán)軍的成績相對比較穩(wěn)定;
(2)若從藍(lán)軍6名士兵中隨機(jī)抽取兩人,求所抽取的兩人的成績之差不超過2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若曲線處的導(dǎo)數(shù)等于,求實數(shù);

(Ⅱ),求的極值;

(Ⅲ)當(dāng)時,上的最大值為,求在該區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑為2,A為直徑延長線上一點,OA=2,B為半圓上任意一點,以線段AB為腰作等腰直角ABCC、O兩點在直線AB的兩側(cè)),當(dāng)∠AOB變化時,OCm恒成立,則m的最小值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤和投資單位:萬元)

(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;

(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).

若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤?

問:如果你是廠長,怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且

(1) 求角 C 的大小

(2) 若 c = 3, 求 △ABC 的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且a2=2,a4=
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:

零件的個數(shù)x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;

(2)求出y關(guān)于x的線性回歸方程

(3)試預(yù)測加工10個零件需要多少小時?

查看答案和解析>>

同步練習(xí)冊答案