【題目】已知函數(shù),.
(1)若曲線在處的切線為,求實教a,b的值.
(2)若,且對一切正實數(shù)x值成立,求實數(shù)b的取值范圍.
(3)若,求函數(shù)的單調(diào)區(qū)間.
【答案】(1);(2);(3)見解析.
【解析】
(1)利用導(dǎo)數(shù)的幾何意義即可;
(2)分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可;
(3)對a分,,,四種情況討論即可.
(1),由題意,即,解得;
(2)當(dāng)時,,對一切正實數(shù)x值成立,即
對一切正實數(shù)x值成立,
設(shè),則,由得,
由得,故在上單調(diào)遞增,在單調(diào)遞減,
所以,所以;
(3)當(dāng)時,,,
令
當(dāng)時,由得,由得,
所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
當(dāng)時,由得,由得,
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
當(dāng)時,,
若,則,,,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;
若,由得或,由得,
所以的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;
綜上,當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
當(dāng)時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;
當(dāng)時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地自2014年至2019年每年年初統(tǒng)計所得的人口數(shù)量如表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人數(shù)(單位:千人) | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)根據(jù)表中的數(shù)據(jù)判斷從2014年到2019年哪個跨年度的人口增長數(shù)量最大?并描述該地人口數(shù)量的變化趨勢;
(2)研究人員用函數(shù)擬合該地的人口數(shù)量,其中的單位是年,2014年年初對應(yīng)時刻,的單位是千人,經(jīng)計算可得,請解釋的實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,△ABC是邊長為6的等邊三角形,D,E分別為AA1,BC的中點.
(1)證明:AE//平面BDC1;
(2)若異面直線BC1與AC所成角的余弦值為.求DE與平面BDC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)直線在矩陣所對應(yīng)的變換下得到直線,求的方程.
(2)已知點是曲線(為參數(shù),)上一點,為坐標(biāo)原點直線的傾斜角為,求點的坐標(biāo).
(3)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120元/千克、80元/千克、70元/千克、40元千克,為增加銷量,張軍對這四種干果進行促銷:一次購買干果的總價達到150元,顧客就少付x(2x∈Z)元.每筆訂單顧客網(wǎng)上支付成功后,張軍會得到支付款的80%.
①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;
②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值.經(jīng)數(shù)據(jù)處理后得到該樣本的頻率分布直方圖,其中質(zhì)量指標(biāo)值不大于1.50的莖葉圖如圖所示,以這100件產(chǎn)品的質(zhì)量指標(biāo)值在各區(qū)間內(nèi)的頻率代替相應(yīng)區(qū)間的概率.
(1)求圖中,,的值;
(2)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(說明:①同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表;②方差的計算只需列式正確);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于1.50的產(chǎn)品至少要占全部產(chǎn)品的”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?/span>65分到145分之間(滿分150分),將統(tǒng)計結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率;
(2)用樣本數(shù)據(jù)估計該校的2000名學(xué)生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表該組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線斜率為0.函數(shù)
(1)試用含的代數(shù)式表示;
(2)求的單調(diào)區(qū)間;
(3)令,設(shè)函數(shù)在處取得極值,記點,,證明:線段與曲線存在異于,的公共點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com