分析 (1)通過討論m的范圍求出不等式的解集即可;
(2)設(shè)g(x)=x2-x+3,根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.
解答 解:(1))f(x)<0,
即mx2-mx<0,
即mx(x-1)<0,
當(dāng)m<0時(shí),解集是(-∞,0)∪(1,+∞),
當(dāng)m=0時(shí),解集是∅,
當(dāng)m>0時(shí),解集是(0,1);
(2)不等式$\frac{1}{m}$f(x)>m-3可化為x2-x+3>m,
設(shè)g(x)=x2-x+3,則g(x)的圖象的對稱軸是x=$\frac{1}{2}$,
故g(x)在[1,2]遞增,
則g(x)min=g(1)=3,
故m<3且m≠0.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查分類討論思想,轉(zhuǎn)化思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{ln2}{4}$,-$\frac{ln2}{8}$] | B. | (-$\frac{ln2}{8}$,-$\frac{ln5}{30}$] | C. | (-$\frac{ln2}{8}$,-$\frac{ln5}{25}$] | D. | (-$\frac{ln3}{9}$,-$\frac{ln2}{8}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f($\frac{7}{5}$)<f($\frac{4}{3}$)<f(-$\frac{1}{2}$) | B. | f($\frac{4}{3}$)<f(-$\frac{1}{2}$)<f($\frac{7}{5}$) | C. | f($\frac{4}{3}$)<f($\frac{7}{5}$)<f(-$\frac{1}{2}$) | D. | f(-$\frac{1}{2}$)<f($\frac{4}{3}$)<f($\frac{7}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\frac{\sqrt{3}}{2}$ | B. | $\frac{3}{2}$+$\sqrt{2}$ | C. | 2-$\sqrt{3}$ | D. | 2+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | [0,4] | C. | [-2,2] | D. | [1,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com