【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
【答案】(1)942;(2)50萬元
【解析】試題分析:(1)根據(jù)題意,首先確定X的所有可能取值,然后利用統(tǒng)計(jì)表格,借助古典概型的公式計(jì)算對(duì)應(yīng)的概率,進(jìn)而利用期望公式求解;(2)利用獨(dú)立重復(fù)實(shí)驗(yàn)的概率計(jì)算公式求解滿足條件的概率,明確為該銷售商購進(jìn)并銷售一輛二手車的利潤的可能性,得到分布列和利潤期望值.
(Ⅰ)由題意可知X的可能取值為,
由統(tǒng)計(jì)數(shù)據(jù)可知:
,
.
所以的分布列為:
所以.
(Ⅱ) ①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為,三輛車中至多有一輛事故車的概率為.
為該銷售商購進(jìn)并銷售一輛二手車的利潤,的可能取值為.
所以的分布列為:
所以.
所以該銷售商一次購進(jìn)100輛該品牌車齡已滿三年的二手車獲得利潤的期望值為萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)某種產(chǎn)品時(shí)的能耗y與產(chǎn)品件數(shù)x之間的關(guān)系式為y=ax+.且當(dāng)x=2時(shí),y=100;當(dāng)x=7時(shí),y=35.且此產(chǎn)品生產(chǎn)件數(shù)不超過20件.
(1)寫出函數(shù)y關(guān)于x的解析式;
(2)用列表法表示此函數(shù),并畫出圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冪函數(shù)f(x)=x3m-5(m∈N)在(0,+∞)上是減函數(shù),且f(-x)=f(x),則m可能等于( )
A. 0 B. 1
C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是否存在常數(shù),使等式對(duì)于一切都成立?若不存在,說明理由;若存在,請(qǐng)用數(shù)學(xué)歸納法證明?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車站每天均有3輛開往省城的分為上、中、下等級(jí)的客車,某天袁先生準(zhǔn)備在該汽車站乘車前往省城辦事,但他不知道客車的車況,也不知道發(fā)車順序.為了盡可能乘上上等車,他采取如下策略:先放過一輛,如果第二輛比第一輛好則上第二輛,否則上第三輛.則他乘上上等車的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì)(),使得等式對(duì)定義域中的每一個(gè)都成立,則稱函數(shù)是“()型函數(shù)”.
(1) 判斷函數(shù)是否為 “()型函數(shù)”,并說明理由;
(2) 若函數(shù)是“()型函數(shù)”,求出滿足條件的一組實(shí)數(shù)對(duì);
(3)已知函數(shù)是“()型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)為(1,4).當(dāng) 時(shí), ,若當(dāng)時(shí),都有,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人獨(dú)立地對(duì)某一技術(shù)難題進(jìn)行攻關(guān)。甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級(jí)不做任何獎(jiǎng)勵(lì);若該技術(shù)難題被攻克,上級(jí)會(huì)獎(jiǎng)勵(lì)萬元。獎(jiǎng)勵(lì)規(guī)則如下:若只有1人攻克,則此人獲得全部獎(jiǎng)金萬元;若只有2人攻克,則獎(jiǎng)金獎(jiǎng)給此二人,每人各得萬元;若三人均攻克,則獎(jiǎng)金獎(jiǎng)給此三人,每人各得萬元。設(shè)甲得到的獎(jiǎng)金數(shù)為X,求X的分布列和數(shù)學(xué)期望。(本題滿分12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市出租車收費(fèi)標(biāo)準(zhǔn)如下:起步價(jià)為8元,起步里程為3 km(不超過3 km按起步價(jià)付費(fèi));超過3 km但不超過8 km時(shí),超過部分按每千米2.15元收費(fèi);超過8 km時(shí),超過部分按每千米2.85元收費(fèi),另每次乘坐需付燃油附加費(fèi)1元.現(xiàn)某人乘坐一次出租車付費(fèi)22.6元,則此次出租車行駛了________km.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com