【題目】如圖1,在直角梯形中,,,,將沿折起,使平面平面,得到幾何體,如圖2所示,
(1)求證:平面;
(2)求幾何體的體積.
【答案】(1)見解析;(2)
【解析】
(1)由題中數(shù)量關(guān)系和勾股定理,得出AC⊥BC,再證BC垂直與平面ACD中的一條直線即可,△ADC是等腰Rt△,底邊上的中線OD垂直底邊,由面面垂直的性質(zhì)得OD⊥平面ABC,所以O(shè)D⊥BC,從而證得BC⊥平面ACD;
(2)由高和底面積,求得三棱錐B﹣ACD的體積即是幾何體D﹣ABC的體積.
(1)在圖1中,△ADC是等腰Rt△,且,可得,
在中由余弦定理可得
從而,故,
取中點連結(jié),則,又面面,
面面,且面,從而平面,
∴,又,,∴平面.
(2) 由(1)可知為三棱錐的高,,得,
所以,
由等體積性可知幾何體的體積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將寬和長都分別為x,的兩個矩形部分重疊放在一起后形成的正十字形面積為注:正十字形指的是原來的兩個矩形的頂點都在同一個圓上,且兩矩形長所在的直線互相垂直的圖形,
求y關(guān)于x的函數(shù)解析式;
當(dāng)x,y取何值時,該正十字形的外接圓面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),點和是函數(shù)圖像的相鄰的兩個對稱中心,且函數(shù)在區(qū)間內(nèi)單調(diào)遞減,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知傾斜角為的直線經(jīng)過點.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(1)寫出曲線的普通方程;
(2)若直線與曲線有兩個不同的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,. 臺體體積公式: , 其中分別為臺體上、下底面面積, 為臺體高.
(1)證明:直線 平面;
(2)若,, ,三棱錐的體積,求 該組合體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn,已知an>0,an2+2an=4Sn+3.
(1)求a1的值;
(2)求{an}的通項公式:
(3)設(shè)bn=,求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高二年級期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計了他們的物理成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,……,后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求出物理成績低于50分的學(xué)生人數(shù);
(2)估計這次考試物理學(xué)科及格率(60分以上為及格);
(3)從物理成績不及格的學(xué)生中選x人,其中恰有一位成績不低于50分的概率為,求此時x的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓于, 兩點,且().
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com