11.在多面體ABCDE中,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2
(1)求證:平面EDC⊥平面BDC;
(2)試判斷直線AC與平面EDC所成角和二面角E-CD-A的大小的關(guān)系.

分析 (1)通過平面與平面垂直的性質(zhì)定理,證明EP⊥平面BCD.
(2)建立空間坐標(biāo)系,求出平面的法向量,利用向量法即可分別求出線面所成的角以及二面角的大。

解答 解:(1)證明:取CD、CB的中點(diǎn)P、N,連接EP,PN,NA,
則PN∥BD,且PN=$\frac{1}{2}$BD,
∴EP∥AN,
∵AB=BC=CA,AN⊥BC,AE⊥平面ABC,AE∥BD,
∴平面ABC⊥平面BDC,
∴AN⊥平面BDC,∴EP⊥平面BDC,由EP?平面EDC,
∴平面EDC⊥平面BDC.
(2)∵AB=BC=CA=BD=2AE=2
∴△ABC是正三角形,則CF⊥AB,
∵AE⊥平面ABC,
∴平面ABDE⊥平面ABC,
則CF⊥平面ABDE,
建立以F為坐標(biāo)原點(diǎn),F(xiàn)C,F(xiàn)B,F(xiàn)z分別為x,y,z軸的空間直角坐標(biāo)系如圖:
則F(0,0,0),A(0,-1,0),B(0,1,0),C($\sqrt{3}$,0,0),
E(0,-1,1),D(0,1,2),
則$\overrightarrow{DE}$=(0,-2,-1),$\overrightarrow{CD}$=(-$\sqrt{3}$,1,2),
設(shè)平面EDC的法向量為$\overrightarrow{m}$=(x,y,z),
則由$\overrightarrow{m}$•$\overrightarrow{DE}$=-2y-z=0,$\overrightarrow{m}$•$\overrightarrow{CD}$=-$\sqrt{3}$x+y+2z=0,
令x=$\sqrt{3}$,則y=-1,z=2,即$\overrightarrow{m}$=($\sqrt{3}$,-1,2),
$\overrightarrow{AC}$=($\sqrt{3}$,1,0),
設(shè)AC與平面EDC所成的角為θ,
則sinθ=|cos<$\overrightarrow{m}$,$\overrightarrow{AC}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{AC}}{|\overrightarrow{m}|AC||}$|=$\frac{\sqrt{3}×\sqrt{3}-1×1}{\sqrt{3+1}•\sqrt{3+1+4}}$=$\frac{3-1}{2×2\sqrt{2}}$=$\frac{2}{4\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,
則θ=arcsin$\frac{\sqrt{2}}{4}$,
設(shè)平面ACD的法向量為$\overrightarrow{n}$=(x,y,z),
由$\overrightarrow{n}$•$\overrightarrow{AC}$=$\sqrt{3}$x+y=0,$\overrightarrow{n}$•$\overrightarrow{CD}$=-$\sqrt{3}$x+y+2z=0,
令x=$\sqrt{3}$,則y=-3,z=3,即$\overrightarrow{n}$=($\sqrt{3}$,-3,3),
則cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{\left|\overrightarrow{m}\right|\left|\overrightarrow{n}\right|}$=$\frac{\sqrt{3}×\sqrt{3}+1×3+2×3}{\sqrt{3+1+4}•\sqrt{3+9+9}}$=$\frac{12}{2\sqrt{2}•\sqrt{21}}$=$\frac{\sqrt{42}}{7}$
即$<\overrightarrow{m},\overrightarrow{n}>$=arccos$\frac{\sqrt{42}}{7}$,即二面角E-CD-A的大小為arccos$\frac{\sqrt{42}}{7}$.

點(diǎn)評(píng) 本題主要考查空間面面垂直的判定以及線面角,二面角的求解,根據(jù)建立空間坐標(biāo)系,求出平面的法向量,利用向量法求二面角是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線y=$\frac{1}{2}$x與雙曲線$\frac{x^2}{9}-\frac{y^2}{4}$=1交于A,B兩點(diǎn),P為雙曲線上不同于A,B的點(diǎn),當(dāng)直線PA,PB的斜率kPA,kPB存在時(shí),kPA•kPB等于( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.與P的位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)集合A={(x,y)|(x+3)2+(y-4)2=5},B={(x,y)|(x+3)2+(y-4)2=20},C={(x,y)|2|x+3|+|y-4|=λ},若(A∪B)∩C≠∅,則實(shí)數(shù)λ的取值范圍是[$\sqrt{5}$ 10].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等比數(shù)列{an}的前n項(xiàng)和Sn=x•2n-1-$\frac{1}{6}$,則an等于(  )
A.2nB.$\frac{1}{3}$×2n-2C.-$\frac{1}{3}$×2n-2D.3×2n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.己知函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x.
(I)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值點(diǎn);
(Ⅱ)若a∈R,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,側(cè)棱PA⊥ABCD,且PA=AB=BC=2,AD=1
(1)試做出平面PAB與平面PCD的交線EP
(2)求證:直線EP⊥平面PBC
(3)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若行列式$|\begin{array}{l}{1}&{2}&{4}\\{cos(π+x)}&{2}&{0}\\{-1}&{1}&{6}\end{array}|$中的元素4的代數(shù)余子式的值等于$\frac{3}{2}$,則實(shí)數(shù)x的取值集合為$\{x|x=±\frac{π}{3}+2kπ,k∈Z\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2x3-9x2+12x+8.求:
(1)函數(shù)f(x)的極值;
(2)函數(shù)在區(qū)間[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx
(Ⅰ)求f(x)的最小值;
(Ⅱ)求證:lnx>$\frac{1}{e^x}-\frac{2}{ex}$,x∈(0,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案