17.在△ABC中,a,b,c分別為角A,B,C所對的邊,角C是鈍角,且sinB=$\frac{2c}$.
(Ⅰ)求角C的值;
(Ⅱ)若b=2,△ABC的面積為$\sqrt{3}$,求c的值.

分析 (Ⅰ)由正弦定理化簡已知可得sinB(2sinC-1)=0,由sinB≠0解得sinC=$\frac{1}{2}$,結(jié)合C是鈍角,即可解得C的值.
(Ⅱ)由已知及三角形面積公式可求a的值,由余弦定理即可解得c的值.

解答 解:(Ⅰ)由sinB=$\frac{2c}$得2csinB=b,由正弦定理得:2sinCsinB=sinB,
所以sinB(2sinC-1)=0,…(3分)
因?yàn)閟inB≠0,
所以sinC=$\frac{1}{2}$,
因?yàn)镃是鈍角,
所以C=$\frac{5π}{6}$.  …(6分)
(Ⅱ)因?yàn)镾=$\frac{1}{2}$absinC=$\frac{1}{2}$a=$\sqrt{3}$,a=2$\sqrt{3}$,…(9分)
由余弦定理得c2=a2+b2-2abcosC=12+4-2×$2\sqrt{3}×2×$(-$\frac{\sqrt{3}}{2}$)=28,
所以c=2$\sqrt{7}$,即c的值為2$\sqrt{7}$.       …(12分)

點(diǎn)評 本題主要考查了正弦定理,余弦定理,三角形面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.sin80°cos20°-cos80°sin20°的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若“?x∈[$\frac{π}{3}$,$\frac{2π}{3}$],cosx≤m”是真命題,則實(shí)數(shù)m的最小值為( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)直線l1:x+my+6=0和l2:(m-2)x+3y+2m=0,當(dāng)m=-1時,l1∥l2,當(dāng)m=$\frac{1}{2}$時,l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)不等式組$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤4}\\{x≥1}\end{array}\right.$表示的平面區(qū)域?yàn)镸,則平面區(qū)域M的面積為1;若點(diǎn)P(x,y)是平面區(qū)域內(nèi)M的動點(diǎn),則z=2x-y的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)為偶函數(shù),且當(dāng)x≥0時,f(x)=x(1+x),則滿足f(x)≤2的x的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow{a}$=(2,x,5),$\overrightarrow$=(4,6,y),若$\overrightarrow{a}$∥$\overrightarrow$,則( 。
A.x=3,y=10B.x=6,y=10C.x=3,y=15D.x=6,y=15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集U={0,1,2,3,4},集合A={1,2},B={2,3,4},則(∁UA)∩B( 。
A.{1}B.{2}C.{3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)在其定義域內(nèi),既是奇函數(shù)又是增函數(shù)的為(  )
A.y=-$\frac{1}{x}$B.y=ln(x+5)C.y=x2-1D.y=x|x|

查看答案和解析>>

同步練習(xí)冊答案