3.變量x,y滿足線性約束條件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥-x-1}\end{array}\right.$,目標(biāo)函數(shù)z=kx+y僅在點(0,2)取得最大值,則k的取值范圍是( 。
A.-3<k<1B.k>1C.-1<k<1D.-1<k<3

分析 由約束條件作出可行域,由題意即可得到k的取值范圍.

解答 解:由約束條件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥-x-1}\end{array}\right.$作出可行域如圖,

∵目標(biāo)函數(shù)z=kx+y僅在點(0,2)取得最大值,
∴k的取值范圍是(-3,1).
故選:A.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a<b<0,則(  )
A.$\frac{1}{a}<\frac{1}$B.a2<abC.a2<b2D.$\frac{1}{a-b}<\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.己知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>1)的左焦點F與拋物線y2=-4x的焦點重合,直線x-y+$\frac{\sqrt{2}}{2}$=0與以原點O為圓心,以橢圓的離心率e為半徑的圓相切.
(I )求該橢圓C的方程
(II)設(shè)點P坐標(biāo)為(-$\frac{1}{8}$,0),若|PA|=|PB|,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知公差為d的等差數(shù)列{an}前n項和為Sn,若有確定正整數(shù)n0,對任意正整數(shù)m,${S}_{{n}_{0}}$•${S}_{{n}_{0}+m}$<0恒成立,則下列說法錯誤的是( 。
A.a1•d<0B.|Sn|有最小值
C.${a}_{{n}_{0}}$•${a}_{{n}_{0}+1}$>0D.${a}_{{n}_{0}+1}•{a}_{{n}_{0}+2}$>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點分別是F1,F(xiàn)2,P為橢圓C1上任意一點,|PF1|2+|PF2|2的最小值為8.
(I)求橢圓C1的方程;
(II)設(shè)橢圓C2:$\frac{{2{x^2}}}{a^2}+\frac{{2{y^2}}}{b^2}=1,Q({{x_0},{y_0}})$為橢圓C2上一點,過點Q的直線交橢圓C1于A,B兩點,且Q為線段AB的中點,過O,Q兩點的直線交橢圓C1于E,F(xiàn)兩點.
(i)求證:直線AB的方程為x0x+2y0y=2;
(ii)當(dāng)Q在橢圓C2上移動時,四邊形AEBF的面積是否為定值?若是,求出該定值;不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某高中組織數(shù)學(xué)知識競賽,采取答題闖關(guān)的形式,分兩種題型,每種題型設(shè)兩關(guān).“數(shù)學(xué)文化”題答對一道得5分,“數(shù)學(xué)應(yīng)用”題答對一道得10分,答對一道題即可進入下一關(guān),否則終止比賽.有甲、乙、丙三人前來參賽,設(shè)三人答對每道題的概率分別是$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,三人答題互不影響.甲、乙選擇“數(shù)學(xué)文化”題,丙選擇“數(shù)學(xué)應(yīng)用”題.
(Ⅰ)求乙、丙兩人所得分數(shù)相等的概率;
(Ⅱ)設(shè)甲、丙兩人所得分數(shù)之和為隨機變量X,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖所示程序框圖,若輸入的k=4,則輸出的s=( 。
A.$\frac{1}{3}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,點$P(\sqrt{2},2)$在橢圓上.
(1)求橢圓C的方程;
(2)過橢圓上的焦點F作兩條相互垂直的弦AC,BD,求|AC|+|BD|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(-4,x),$\overrightarrow$=(1,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=2.

查看答案和解析>>

同步練習(xí)冊答案