【題目】已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè)函數(shù),若存在不相等的實(shí)數(shù),,使得,證明:.
【答案】(1)見解析;(2)詳見解析.
【解析】
(1)對函數(shù)進(jìn)行求導(dǎo)得,再對分三種情況進(jìn)行討論;
(2)先求出,再對進(jìn)行求導(dǎo)研究函數(shù)的圖象特征,當(dāng)時(shí),圖象在上是增函數(shù),不符合題;當(dāng)時(shí),再將問題轉(zhuǎn)化為構(gòu)造函數(shù)進(jìn)行求解證明.
(1)函數(shù)的定義域?yàn)?/span>.
,
因?yàn)?/span>,所以,
①當(dāng),即時(shí),
由得或,由得,
所以在,上是增函數(shù), 在上是減函數(shù);
②當(dāng),即時(shí),所以在上是增函數(shù);
③當(dāng),即時(shí),由得或,由得,所以在,.上是增函數(shù),在.上是減函
綜上可知:
當(dāng)時(shí)在,上是單調(diào)遞增,在上是單調(diào)遞減;
當(dāng)時(shí),在.上是單調(diào)遞增;
當(dāng)時(shí)在,上是單調(diào)遞增,在上是單調(diào)遞減.
(2),,
當(dāng)時(shí), ,所以在上是增函數(shù),故不存在不相等的實(shí)數(shù),,使得,所以.
由得,即,
不妨設(shè),則,
要證,只需證,即證,
只需證,令,只需證,即證,
令,則,
所以在上是增函數(shù),所以,
從而,故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)滿足:(1)對任意,恒有成立;(2)當(dāng)時(shí),.給出如下結(jié)論:
①對任意,有;
②函數(shù)的值域?yàn)?/span>
③存在,使得;
④“函數(shù)在區(qū)間上單調(diào)遞減”的充要條件是“存在,使得”.
上述結(jié)論正確有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣a.
(1)當(dāng)a=1時(shí),解不等式f(x)>x+1;
(2)若存在實(shí)數(shù)x,使得f(x)f(x+1),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,某市為促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1000t生活垃圾.經(jīng)分揀以后數(shù)據(jù)統(tǒng)計(jì)如下表(單位:):根據(jù)樣本估計(jì)本市生活垃圾投放情況,下列說法錯(cuò)誤的是( )
廚余垃圾”箱 | 可回收物”箱 | 其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
A.廚余垃圾投放正確的概率為
B.居民生活垃圾投放錯(cuò)誤的概率為
C.該市三類垃圾箱中投放正確的概率最高的是“可回收物”箱
D.廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差為20000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.
(1)求證:AD⊥平面BFED;
(2)點(diǎn)P在線段EF上運(yùn)動,設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為邊長為2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,點(diǎn)F為棱PD的中點(diǎn).
(1)在棱AB上是否存在一點(diǎn)E,使得AF∥面PCE,并說明理由;
(2)當(dāng)二面角D﹣FC﹣B的余弦值為時(shí),求直線PB與平面ABCD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的對角線與交于點(diǎn)O,,點(diǎn)分別在上,,交于點(diǎn). 將沿折到△的位置,.
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求時(shí),的單調(diào)區(qū)間;
(2)若存在,使得對任意的,都有,求的取值范圍,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com