【題目】某學校研究性學習小組調(diào)查學生使用智能手機對學習成績的影響,詢問了 30 名同學,得到如下的 列聯(lián)表:
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過 0.005 的前提下認為使用智能手機對學習成績有影響?
(Ⅱ)從使用學習成績優(yōu)秀的 12 名同學中,隨機抽取 2 名同學,求抽到不使用智能手機的人數(shù)的分布列及數(shù)學期望.智能手機的 20 名同學中,按分層抽樣的方法選出 5 名同學,求所抽取的 5 名同學中“學習成績優(yōu)秀”和“學習成績不優(yōu)秀”的人數(shù);
(Ⅲ)從問題(Ⅱ)中倍抽取的 5 名同學,再隨機抽取 3 名同學,試求抽取 3 名同學中恰有 2 名同學為“學習成績不優(yōu)秀”的概率.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0,。025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)能在犯錯誤的概率不超過 0.005 的前提下認為使用智能手機對學習成績有影響.(2)見解析;(3) .
【解析】
(Ⅰ)先求,再判斷能否在犯錯誤的概率不超過 0.005 的前提下認為使用智能手機對學習成績有影響. (Ⅱ)先寫出x的值,再求P(X),再寫x的分布列和數(shù)學期望.利用分層抽樣求所抽取的 5 名同學中“學習成績優(yōu)秀”和“學習成績不優(yōu)秀”的人數(shù). (Ⅲ)利用古典概型求抽取 3 名同學中恰有 2 名同學為“學習成績不優(yōu)秀”的概率.
(Ⅰ)由列聯(lián)表可得
所以能在犯錯誤的概率不超過 0.005 的前提下認為使用智能手機對學習成績有影響.
(Ⅱ)由題得X=0,1,2.
,
所以x的分布列為
X | 0 | 1 | 2 |
P |
所以x的期望為.
根據(jù)題意,所抽取的 5 名同學中“學習成績優(yōu)秀”有1 名同學,“學習成績不優(yōu)秀”有 4 名同學.
(Ⅲ)學習成績不優(yōu)秀的 4 名同學分別記為;“學習成績優(yōu)秀”有1名同學記為.則再從中隨機抽取 3 人構成的所有基本事件為:,,,,,,,,,,共有10 種;抽取 3 人中恰有 2 名同學為“學習成績不優(yōu)秀” 所含基本事件為:,,,,,共有 6 種,所求為.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足,則下列說法正確的是( )
A. 數(shù)列的前項和為 B. 數(shù)列的通項公式為
C. 數(shù)列為遞增數(shù)列 D. 數(shù)列是遞增數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值;
(2)當時,記函數(shù)的所有單調(diào)遞增區(qū)間的長度為,所有單調(diào)遞減區(qū)間的長度為,證明:.(注:區(qū)間長度指該區(qū)間在軸上所占位置的長度,與區(qū)間的開閉無關.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,對于任意的,都有且當時,,若.
(1)求證:為奇函數(shù);
(2)求證: 是上的減函數(shù);
(3)求函數(shù)在區(qū)間[-2,4]上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)報道,某公司的33名職工的月工資(以元為單位)如下:
職務 | 董事長 | 副董事長 | 董事 | 總經(jīng)理 | 經(jīng)理 | 管理員 | 職員 |
人數(shù) | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工資 | 5500 | 5500 | 3500 | 3000 | 2500 | 2000 | 1500 |
(1)求該公司職工月工資的平均數(shù)(精確到元);
(2)假設副董事長的工資從5000元提升到20000元,董事長的工資從5500元提升到30000元,那么新的平均數(shù)又是什么?(精確到元)
(3)你認為工資的平均數(shù)能反映這個公司員工的工資水平嗎?結合此問題談一談你的看法.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某項體能測試中,規(guī)定每名運動員必需參加且最多兩次,一旦第一次測試通過則不再參加第二次測試,否則將參加第二次測試.已知甲每次通過的概率為,乙每次通過的概率為,且甲乙每次是否通過相互獨立.
(Ⅰ)求甲乙至少有一人通過體能測試的概率;
(Ⅱ)記為甲乙兩人參加體能測試的次數(shù)和,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,點的坐標為,點在拋物線上,且滿足,(為坐標原點).
(1)求拋物線的方程;
(2)過點作斜率乘積為1的兩條不重合的直線,且與拋物線交于兩點,與拋物線交于兩點,線段的中點分別為,求證:直線過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系.
(Ⅰ)求直線的參數(shù)方程和極坐標方程;
(Ⅱ)設直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(),.
(1)當在處的切線與直線垂直時,方程有兩相異實數(shù)根,求的取值范圍;
(2)若冪函數(shù)的圖象關于軸對稱,求使不等式在上恒成立的的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com