將下一列參數(shù)方程化為普通方程:
x=
3k
1+k2
y=
6k2
1+k2
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:當(dāng)k≠0時(shí),
y
x
=2k
,即k=
y
2x
代入x=
3k
1+k2
即可得出.k=0直接驗(yàn)證即可.
解答: 解:當(dāng)k≠0時(shí),
y
x
=2k
,即k=
y
2x
代入x=
3k
1+k2
可得4x2+y2-6y=0,k=0時(shí)也滿足.
∴普通方程為:4x2+y2-6y=0.
點(diǎn)評(píng):本題考查了參數(shù)方程化為普通方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
+
OB
+
OC
=
0
,
OA
OB
=
OB
OC
=
OC
OA
=-1.
(1)求|
OA
|;
(2)試判斷△ABC的形狀,并求其面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x,f(a+2)=18,g(x)=λ•3ax-4x定義域[0,1].
(1)求a的值;
(2)若函數(shù)g(x)在[0,1]上是單調(diào)遞減函數(shù),求實(shí)數(shù)λ的取值范圍;
(3)若函數(shù)g(x)的最大值為
1
2
,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
1-tanα
1+tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,DE∥BC,DF∥AC,AE=2,EC=1,BC=4,則BF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一組數(shù)列如下表

現(xiàn)用ai,j表示第i行的第j個(gè)數(shù),求a9,5=
 
..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x+2|+|x-2|≥a+
4
a
對(duì)任意的x恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,∠ABC=90°,點(diǎn)D在BC邊上,點(diǎn)E在AD上.
(l)若點(diǎn)D是CB的中點(diǎn),∠CED=30°,DE=1,CE=
3
求△ACE的面積;
(2)若 AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
(1)cos2(A+B)-sin2(A-B)=cos2Acos2B;
(2)cos2θ(1-tan2θ)=cos2θ.

查看答案和解析>>

同步練習(xí)冊(cè)答案