分析 (1)由同角三角函數(shù)基本關(guān)系,正弦定理,三角形內(nèi)角和定理,誘導(dǎo)公式化簡(jiǎn)已知等式可得$cosA=\frac{1}{2}$,結(jié)合范圍A∈(0,π),可求A的值.
(2)由余弦定理,基本不等式可求bc≤12,進(jìn)而利用三角形面積公式可求最大值.
解答 (本題滿分為12分)
解:(1)因?yàn)?\frac{tanA+tanB}{tanB}=\frac{2c}$,
由同角三角函數(shù)基本關(guān)系和正弦定理得,$\frac{{\frac{sinA}{cosA}+\frac{sinB}{cosB}}}{{\frac{sinB}{cosB}}}=\frac{2sinC}{sinB}$,…(1分)
整理得:$\frac{sin(A+B)}{cosA}=2sinC$,…(3分)
又A+B=π-C,
所以sin(A+B)=sinC,
所以$cosA=\frac{1}{2}$.…(5分)
又A∈(0,π),
所以$A=\frac{π}{3}$.…(6分)
(2)由余弦定理得:$12={b^2}+{c^2}-2bccos\frac{π}{3}$,
即:b2+c2-bc=12,…(8分)
所以12=b2+c2-bc≥2bc-bc=bc,當(dāng)且僅當(dāng)$b=c=2\sqrt{3}$時(shí)取等號(hào),…(10分)
所以${S_{△ABC}}=\frac{1}{2}bcsin\frac{π}{3}≤\frac{1}{2}×12×\frac{{\sqrt{3}}}{2}=3\sqrt{3}$,
即△ABC面積的最大值為$3\sqrt{3}$.…(12分)
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系,正弦定理,三角形內(nèi)角和定理,誘導(dǎo)公式,余弦定理,基本不等式,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{3\sqrt{10}}}{20}$ | B. | $\frac{{\sqrt{10}}}{20}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com