5.用數(shù)字1、2、3、4、5組成無重復(fù)數(shù)字的三位數(shù),其中奇數(shù)的個數(shù)為36.(結(jié)果用數(shù)值表示)

分析 從1,3,5中選一個為個位數(shù)字,再從剩下的4個數(shù)字選2個排在前2位,問題得意解決.

解答 解:從1,3,5中選一個為個位數(shù)字,再從剩下的4個數(shù)字選2個排在前2位,共有C31A42=36,
故答案為:36.

點評 本題考查計數(shù)原理的運用,考查分步計數(shù)的數(shù)學思想,正確分步是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.A={x|x2-2x-3<0},B={x|(x-m-1)(x-m+1)≥0}
(1)當m=3時,求A∪B
(2)若p:x2-2x-3<0;q:(x-m-1)(x-m+1)≥0且q是p的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.直三棱柱ABC-A1B1C1的六個頂點都在直徑為$\sqrt{269}$的球面上,且AB=5,AC=12,BC=13,點D是BB1的中點,則AD與平面BCC1B1所成角的正弦值為( 。
A.$\frac{6}{13}$B.$\frac{5}{13}$C.$\frac{6\sqrt{2}}{13}$D.$\frac{5\sqrt{2}}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=ax-(k-1)a-x(a>1)是定義在R 上的奇函數(shù).
(1)求k 的值并判斷函數(shù) f (x)單調(diào)性;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠BCD=45°.△PAB與△PAD都是等邊三角形.
(1)求證:CD⊥平面PBD;
(2)求直線CD與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,且$\frac{a}$cosC+$\frac{c}{2b}$=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.從1,2,3,4,5這5個數(shù)字中任選2個數(shù)字,則這2個數(shù)字之和為偶數(shù)的概率為(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知a,b是常數(shù),ab≠0,若函數(shù)f(x)=ax3+barcsinx+3的最大值為10,則f(x)的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若復(fù)數(shù)z=$\frac{1+2i}{3-i}$(i為虛數(shù)單位),則z的模為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習冊答案