17.已知點(diǎn)A是拋物線y2=2px(p>0)上一點(diǎn),F(xiàn)為其焦點(diǎn),以|FA|為半徑的圓交準(zhǔn)線于B,C兩點(diǎn),△FBC為正三角形,且△ABC的面積是$\frac{128}{3}$,則拋物線的方程是( 。
A.y2=12xB.y2=14xC.y2=16xD.y2=18x

分析 由等邊三角形的性質(zhì)可得|BF|=|AF|=$\frac{2p}{\sqrt{3}}$,由拋物線的定義和三角形的面積公式,計(jì)算即可得到p=8,進(jìn)而得到拋物線方程.

解答 解:由題意可得$\frac{|DF|}{|BF|}$=cos30°且|DF|=p,
可得|BF|=$\frac{2p}{\sqrt{3}}$,從而|AF|=$\frac{2p}{\sqrt{3}}$,
由拋物線的定義可得A到準(zhǔn)線的距離也為$\frac{2p}{\sqrt{3}}$,
又△ABC的面積為$\frac{128}{3}$,
可得$\frac{1}{2}$•$\frac{2p}{\sqrt{3}}$•$\frac{2p}{\sqrt{3}}$=$\frac{128}{3}$,
解得p=8,則拋物線的方程為y2=16x.
故選:C.

點(diǎn)評(píng) 本題考查拋物線的定義、方程和性質(zhì),注意運(yùn)用定義法解題,考查等邊三角形的性質(zhì),以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數(shù)試卷(解析版) 題型:填空題

,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知$a={log_2}{3^{-1}}$,${(\frac{1}{2})^b}=5$,c=log32.則a,b,c的大小關(guān)系為:b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線C:y=$\frac{1}{2}$x2,過(guò)點(diǎn)Q(1,1)的動(dòng)直線與拋物線C交于不同的兩點(diǎn)A,B,分別以A,B為切點(diǎn)作拋物線的切線l1,l2,直線l1,l2交于點(diǎn)P
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)求△PAB面積的最小值,并求出此時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=lnx-ax在區(qū)間(1,+∞)上單調(diào)遞減,則a的取值范圍是( 。
A.[1,+∞)B.[-1,+∞)C.(-∞,1]D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+3x2-6,若f′(-1)=4,則實(shí)數(shù)a的值為(  )
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若A(x1,y1),B(x2,y2)是拋物線y2=4x上相異的兩點(diǎn),且在x軸同側(cè),點(diǎn)C(2,0).若直線AC,BC的斜率互為相反數(shù),則y1y2=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(理科)已知函數(shù)f(x)=eax•($\frac{a}{x}$+a+1),其中a≥-1.
(Ⅰ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若存在x1>0,x2<0,使得f(x1)<f(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f (x)=x2-x|x-a|-3a,a≥3.若函數(shù)f (x)恰有兩個(gè)不同的零點(diǎn)x1,x2,則|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|的取值范圍是( 。
A.(1,+∞)B.($\frac{1}{3}$,+∞)C.($\frac{1}{3}$,1]D.($\frac{1}{2}$,$\frac{1}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案