設(shè)x=
1
3+2
2
,y=3-
2
,集合M={m|m=a+b
2
,a∈Q,b∈Q},那么x,y與集合M的關(guān)系是( 。
A、x∈M,y∈M
B、x∈M,y∉M
C、x∉M,y∈M
D、x∉M,y∉M
考點:元素與集合關(guān)系的判斷
專題:集合
分析:對元素x進行整理,分母有理化,分子和分母同乘以分母的有理化因式,得到結(jié)果,進而根據(jù)集合M中元素滿足的性質(zhì)判斷可得答案.
解答: 解:x=
1
3+2
2
=3-2
2
,
∵3∈Q,-2∈Q
∴x∈M
∵3∈Q,-1∈Q
∴y∈M
故選:A.
點評:本題考查元素與集合關(guān)系的判斷,本題解題的關(guān)鍵是整理數(shù)字成集合中元素所對應(yīng)的形式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2+5
( 。
A、是奇函數(shù)但不是偶函數(shù)
B、是偶函數(shù)但不是奇函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
sin60°+cos45°
cos60°+sin45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+6y+1=0的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在鈍角△ABC中,a,b,c分別為A,B,C對邊,已知a=1,b=2,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-
π
12
,求f(
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c>0,若4a=6b=9c,則( 。
A、
1
a
+
1
b
+
1
c
=1
B、
1
a
+
2
b
+
1
c
=1
C、
1
a
+
1
c
=
2
b
D、
2
a
+
2
c
=
1
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}各項均不為0,前n項和為Sn,bn=an3,bn的前n項和為Tn,且Tn=Sn2
(1)若數(shù)列{an}共3項,求所有滿足要求的數(shù)列;
(2)求證:an=n(n∈N*)是滿足已知條件的一個數(shù)列;
(3)請構(gòu)造出一個滿足已知條件的無窮數(shù)列{an},并使得a2015=-2014;若還能構(gòu)造其他符合要求的數(shù)列,請一并寫出(不超過四個).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=-
1
2
x2+
a
2
x-
3
2

(Ⅰ)求f(x)在x=e處的切線方程;
(Ⅱ)在函數(shù)f(x)與g(x)的公共定義域內(nèi)f(x)的圖象始終在g(x)圖象的上方,求實數(shù)a的范圍;
(Ⅲ)是否存在實數(shù)s,t(0<s<t),使x∈[s,t]時,函數(shù)h(x)=
2f(x)+3
x
+x-4圖象恒在x軸上方且值域為[2lns,2lnt]?若存在,求出s,t的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案