18.函數(shù)y=a2-x+2(a>0,a≠1)的圖象恒過一定點(diǎn)是(2,3).

分析 根據(jù)a0=1恒成立,可得:當(dāng)x=2時(shí),a2-x+2=3恒成立,進(jìn)而得到答案.

解答 解:∵a0=1恒成立,
故當(dāng)x=2時(shí),a2-x+2=3恒成立,
即函數(shù)y=a2-x+2(a>0,a≠1)的圖象恒過定點(diǎn)(2,3),
故答案為:(2,3).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問題,指數(shù)函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-7≤0}\\{x-3y+1≤0}\\{3x-y-5≥0}\end{array}\right.$,則z=3x-2y的最大值為( 。
A.1B.4C.8D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=1,AB=2(如圖①),將△ADC沿AC折起,使D到D′,構(gòu)成三棱錐D′-ABC,如圖②所示.
(1)若BD′=$\sqrt{3}$,求證:面ACD′⊥面BCD′;
(2)若二面角D′-AC-B為60°,求三棱錐D′-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知3x2+2y2≤6,求2x+y的最大值
(2)求不等式|x-1|+|x+2|<5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)定義在R上的函數(shù)f(x)是最小正周期為$\frac{π}{2}$的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)$x∈[0,\frac{π}{2}]$時(shí),0<f(x)<1,當(dāng)x∈(0,$\frac{π}{2}$)且x≠$\frac{π}{4}$時(shí),(x-$\frac{π}{4}$)f'(x)<0,則方程f(x)=cos2x在[-2π,2π]上的根的個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=x4+4x3+ax2-4x+1的圖象恒在x軸上方,則實(shí)數(shù)a的取值范圍是( 。
A.(2,+∞)B.(1,+∞)C.($\frac{\sqrt{3}-1}{2}$,+∞)D.($\frac{\sqrt{2}-1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若不同的兩點(diǎn)A,B到平面α的距離相等,則下列命題中一定正確的是( 。
A.A,B兩點(diǎn)在平面α的同側(cè)B.A,B兩點(diǎn)在平面α的異側(cè)
C.過A,B兩點(diǎn)必有垂直于平面α的平面D.過A,B兩點(diǎn)必有平行于平面α的平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線f(x)=x2-3x+1在點(diǎn)(1,-1)處的切線方程為(  )
A.y=-x-1B.y=xC.y=-xD.y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知回歸直線方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,假設(shè)學(xué)生在高中時(shí)數(shù)學(xué)成績和物理成績是線性相關(guān)的,若5個(gè)學(xué)生在高一下學(xué)期某次考試中數(shù)學(xué)成績x(總分150分)和物理成績y(總分100分)如表格所示:
(Ⅰ)求這次高一數(shù)學(xué)成績和物理成績間的線性回歸方程;
(Ⅱ)若小紅這次考試的物理成績是93分,你估計(jì)她的數(shù)學(xué)成績是多少分呢?(精確到0.1).
($\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案