2.已知數(shù)列{an}中,a1=m,an+1=$\left\{\begin{array}{l}{16{n}^{2}{,a}_{n}<16{n}^{2}}\\{2{a}_{n},{a}_{n}≥16{n}^{2}}\end{array}\right.$ (n∈N*),若{an}為等比數(shù)列,則實(shí)數(shù)m的取值范圍是{m|m≥16或m=8}.

分析 由已知得當(dāng)m<16時(shí),由等比數(shù)列的性質(zhì)推導(dǎo)出a1=m=8;當(dāng)m≥16時(shí),${a}_{n}=m×{2}^{n-1}$.由此能求出實(shí)數(shù)m的取值范圍.

解答 解:∵a1=m,an+1=$\left\{\begin{array}{l}{16{n}^{2}{,a}_{n}<16{n}^{2}}\\{2{a}_{n},{a}_{n}≥16{n}^{2}}\end{array}\right.$ (n∈N*),{an}為等比數(shù)列
∴當(dāng)m<16時(shí),a2=16,a3=32,a4=64,an=8×2n-1,∴a1=m=8;
當(dāng)m≥16時(shí),a2=2m,a3=4m,a4=8m,${a}_{n}=m×{2}^{n-1}$.
綜上,實(shí)數(shù)m的取值范圍是{m|m≥16或m=8}.
故答案為:{m|m≥16或m=8}.

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若$cos(-\frac{α}{2})+sin(π-\frac{α}{2})=\frac{{2\sqrt{10}}}{5}$,則sinα的值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn)〜用水量不超過a的部分按照平價(jià)收費(fèi),超過a的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖.
(1)由于某種原因頻率分布直方圖部分?jǐn)?shù)據(jù)丟失,請(qǐng)?jiān)趫D中將其補(bǔ)充完整;
(2)用樣本估計(jì)總體,如果希望80%的居民每月的用水量不超出標(biāo)準(zhǔn)〜則月均用水量的最低標(biāo)準(zhǔn)定為多少噸,請(qǐng)說明理由;
(3)從頻率分布直方圖中估計(jì)該100位居民月均用水量的眾數(shù),中位數(shù),平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.寫出直線的斜截式方程:斜率是$\frac{2}{3}$,在y軸上的截距是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow{AB}$=-$\frac{3}{2}$$\overrightarrow{BC}$,$\overrightarrow{BD}$=-$\frac{3}{5}$$\overrightarrow{DC}$,若$\overrightarrow{AC}$=$λ\overrightarrow{CD}$,則λ等于( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2$\sqrt{3}$sin(π-x)sin($\frac{π}{2}$+x)+2cos2x-1.
(1)求函數(shù)f(x)的最大值和最小值,并求取得最大值和最小值時(shí)對(duì)應(yīng)的x的值.
(2)設(shè)方程f(x)=m在區(qū)間(0,π)內(nèi)有兩個(gè)相異的實(shí)數(shù)根x1,x2,求x1+x2的值.
(3)如果對(duì)于區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的任意一個(gè)x,都有f(x)-a≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sinxcosx+$\sqrt{3}$cos2x+3.求:
(1)f(x)的最小正周期;
(2)f(x)的最大值及取最大值時(shí)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線x+2y=2,則x2+y2的最小值為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,半圓C1的極坐標(biāo)方程為ρ=4sinθ,$θ∈[{\frac{π}{2},π}]$
(1)求半圓C1的參數(shù)方程;
(2)設(shè)動(dòng)點(diǎn)A在半圓C1上,動(dòng)線段OA的中點(diǎn)M的軌跡為C2,點(diǎn)D在C2上,C2在點(diǎn)D處的切線與直線$y=\sqrt{3}x+2$平行,求點(diǎn)D的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案