19.“m=1”是“直線mx+y-2=0與直線x+my+1-m=0平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義,分別進(jìn)行判斷從而得到結(jié)論.

解答 解:m=1時(shí),直線mx+y-2=0與直線x+my+1-m=0相互平行,是充分條件,
若直線mx+y+2=0與直線x+my+1-m=0相互平行,
則$\frac{m}{1}=\frac{1}{m}≠\frac{2}{1-m}$,解得:m=1,是必要條件,
故選:C.

點(diǎn)評(píng) 本題考查了充分必要條件,考查了兩直線平行的性質(zhì)及判定,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,是奇函數(shù)且在定義域內(nèi)單調(diào)遞減的函數(shù)是( 。
A.$y={log_{\frac{1}{2}}}x$B.$y=\frac{1}{x}$C.y=-tanxD.y=-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.方程4x-9×2x+8=0的解是0或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若△ABC是邊長(zhǎng)為a的正三角形,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=( 。
A.$\frac{1}{2}$a2B.-$\frac{1}{2}$a2C.a2D.-a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,若tan$\frac{A+B}{2}$=2sinC且AB=3,則△ABC的周長(zhǎng)的取值范圍(4,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)a、b、c成等比數(shù)列,非零實(shí)數(shù)x,y分別是a與b,b與c的等差中項(xiàng).
(1)已知 ①a=1、b=2、c=4,試計(jì)算$\frac{a}{x}+\frac{c}{y}$的值;
②a=-1、b=$\frac{1}{3}$、c=-$\frac{1}{9}$,試計(jì)算$\frac{a}{x}+\frac{c}{y}$的值
(2)試推測(cè)$\frac{a}{x}+\frac{c}{y}$與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列命題中,正確命題的個(gè)數(shù)是( 。
①若a>b,c>d,則ac>bd;
②若ac2>bc2,則a>b;
③若a>b,c>d,則a-c>b-d;
④若a>0,b>0,則$\frac{1}{a}$+$\frac{1}$≥$\frac{2}{\sqrt{ab}}$;
⑤y=sinx+$\frac{2}{sinx}$,x∈(0,$\frac{π}{2}$]的最小值是2$\sqrt{2}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若不等式x2+2ax+1≥0對(duì)于一切x∈(0,$\frac{1}{2}}$]成立,則a的最小值是-$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=$\sqrt{2}$,CC1=1,M為線段AB的中點(diǎn).
(1)求異面直線DD1 與MC1所成的角;
(2)求直線MC1與平面BB1C1C所成的角;
(3)求三棱錐C-MC1D1的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案