19.若sinα=$\frac{\sqrt{3}}{2}$,則cos2α=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

分析 由已知利用二倍角的余弦函數(shù)公式即可計(jì)算得解.

解答 解:∵sinα=$\frac{\sqrt{3}}{2}$,
∴cos2α=1-2sin2α=1-2×($\frac{\sqrt{3}}{2}$)2=-$\frac{1}{2}$.
故選:D.

點(diǎn)評 本題主要考查了二倍角的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夾角為60°,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,若$\overrightarrow{OC}=2\overrightarrow{OA}+\overrightarrow{OB}$,則$|\overrightarrow{OC}|$=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$a={3^{\frac{1}{3}}},b={({\frac{1}{4}})^{3.2}},c={log_{0.7}}3$,則a,b,c的大小關(guān)系為(  )
A.c<a<bB.c<b<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=-x2+2x的定義域和值域分別是[m,n]和[3m,3n],則m+n=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在極坐標(biāo)系中,圓C的方程為ρ=4$\sqrt{2}$cos(θ-$\frac{π}{4}$),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t+1}\\{y=t-1}\end{array}\right.$(t為參數(shù)),
(1)求圓C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求三角形△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),點(diǎn)F1,F(xiàn)2分別為左、右焦點(diǎn),若雙曲線右支上存在點(diǎn)P滿足$\frac{|\overrightarrow{P{F}_{1}}|}{|\overrightarrow{P{F}_{2}}|}$=e(e為雙曲線的離心率),則e的最大值為(  )
A.4$\sqrt{2}$B.3+$\sqrt{5}$C.$\sqrt{2}$+1D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b(其中a,b不同時為0),則稱函數(shù)y=f(x)為“準(zhǔn)奇函數(shù)”,稱點(diǎn)(a,b)為函數(shù)f(x)的“中心點(diǎn)”.現(xiàn)有如下命題:
①函數(shù)f(x)=sinx+1是準(zhǔn)奇函數(shù);
②若準(zhǔn)奇函數(shù)y=f(x)在R上的“中心點(diǎn)”為(a,f(a)),則函數(shù)F(x)=f(x+a)-f(a)為R上的奇函數(shù);
③已知函數(shù)f(x)=x3-3x2+6x-2是準(zhǔn)奇函數(shù),則它的“中心點(diǎn)”為(1,2);
其中正確的命題是①②③..(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+k(1-{a}^{2}),(x≥0)}\\{{x}^{2}+({a}^{2}-4a)x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R,若對任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x1,x2(x1≠x2),使得f(x2)-f(x1)=0成立,k=f(a)=$\frac{(3-a)^{2}}{1-{a}^{2}}$(0<a≤4).(并且寫出a的取值范圍)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以點(diǎn)A(4,1,9),B(10,-1,6),C(2,4,3)為頂點(diǎn)的三角形是(  )
A.等腰直角三角形B.等邊三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

同步練習(xí)冊答案