【題目】在正方體ABCD-A1B1C1D1中,E為AB的中點,F為AA1的中點,求證:
(1)E、C、D1、F、四點共面;
(2)CE、D1F、DA三線共點.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3﹣3x2 . (Ⅰ) 求f(x)的單調區(qū)間;
(Ⅱ) 若f(x)的定義域為[﹣1,m]時,值域為[﹣4,0],求m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一同學在電腦中打出如下若干個圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前55個圈中的●的個數是( )
A.10
B.9
C.8
D.11
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3﹣3x2﹣9x+2.
(1)求函數f(x)的單調區(qū)間;
(2)求函數f(x)在區(qū)間[﹣1,m](m>﹣1)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線C1:ρsin2θ=4cosθ,以極點為坐標原點,極軸為軸正半軸建立直角坐標系xOy,曲線C2的參數方程為 (t為參數).
(1)求C1、C2的直角坐標方程;
(2)若曲線C1與曲線C2交于A、B兩點,且定點P的坐標為(2,0),求|PA||PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知隨機變量X~N(μ,σ2),且其正態(tài)曲線在(-∞,80)上是增函數,在(80,+∞)上為減函數,且P(72≤X≤88)=0.682 6.
(1)求參數μ,σ的值;
(2)求P(64<X≤72).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在12件同類型的零件中有2件次品,抽取3次進行檢驗,每次抽取1件,并且取出后不再放回,若以ξ和η分別表示取到的次品數和正品數.
(1)求ξ的分布列、均值和方差;
(2)求η的分布列、均值和方差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,ABCD-A1B1C1D1是正方體,在圖①中E,F分別是D1C1,B1B的中點,畫出圖①、②中有陰影的平面與平面ABCD的交線,并給出證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com