【題目】設(shè)函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。
(1)證明:f(x)≥5;
(2)若f(1)<6成立,求實數(shù)a的取值范圍。
【答案】(1)見解析(2)(1,4)
【解析】試題分析:
(1)由題意結(jié)合絕對值不等式的性質(zhì)和均值不等式的性質(zhì)即可證得題中的結(jié)論;
(2)由題意得到關(guān)于實數(shù)a的不等式,然后求解絕對值不等式可得實數(shù)a的取值范圍是(1,4).
試題解析:
f(x)=丨x+a+1丨+丨x-丨≥丨(x+a+1)-(x-)丨=丨a+1+丨
∵a>0,∴f(x)≥a+1+≥2+1=5
(II)由f(1)<6得:丨a+2丨+丨1-丨<6
∵a>0,∴丨1-丨<4-a, <4-a
①當(dāng)a≥4時,不等式<4-a無解;
②當(dāng)a<4時,不等式,即<1,a>1,所以1<a<4
綜上,實數(shù)a的取值范圍是(1,4)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺絲,第一階段,首先隨意擰一個螺絲,接著擰它對角線上(距離它最遠(yuǎn)的,下同)螺絲,再隨意擰第三個螺絲,第四個也擰它對角線上螺絲,第五個和第六個以此類推,但每個螺絲都不要擰死;第二階段,將每個螺絲擰死,但不能連續(xù)擰相鄰的2個螺絲。則不同的固定方式有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸,那么該企業(yè)可獲得最大利潤是___________萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:當(dāng)銷售利潤不超過15萬元時,按銷售利潤的10%進(jìn)行獎勵;當(dāng)銷售利潤超過15萬元時,若超過部分為A萬元,則超出部分按2log5(A+1)進(jìn)行獎勵,沒超出部分仍按銷售利潤的10%進(jìn)行獎勵.記獎金總額為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出該公司激勵銷售人員的獎勵方案的函數(shù)表達(dá)式;
(2)如果業(yè)務(wù)員老張獲得5.5萬元的獎金,那么他的銷售利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(x2﹣3)ex , 當(dāng)m在R上變化時,設(shè)關(guān)于x的方程f2(x)﹣mf(x)﹣ =0的不同實數(shù)解的個數(shù)為n,則n的所有可能的值為( )
A.3
B.1或3
C.3或5
D.1或3或5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,關(guān)于原點對稱,恰為拋物線: 的焦點,點在拋物線上,且線段的中點恰在軸上,的面積為8.若拋物線上存在點使得,則實數(shù)的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ka﹣x(k,a為常數(shù),a>0且a≠1)的圖象過點A(0,1),B(3,8).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 是奇函數(shù),求b的值;
(3)在(2)的條件下判斷函數(shù)g(x)的單調(diào)性,并用定義證明你的結(jié)論;
(4)解不等式g(3x)+g(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中, 是的中點, ,其周長為,若點在線段上,且.
(1)建立合適的平面直角坐標(biāo)系,求點的軌跡的方程;
(2)若是射線上不同兩點, ,過點的直線與交于,直線與交于另一點.證明: 是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com