16.已知集合A={x|x2-3x+2=0},B={x|3x+1=9},則A∪B=( 。
A.{-2,1,2}B.{-2,2}C.{1,2}D.{1}

分析 先分別求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={x|x2-3x+2=0}={1,2},
B={x|3x+1=9}={1},
∴A∪B={1,2}.

點(diǎn)評(píng) 本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知AB是單位圓O上的一條弦,λ∈R,若$|{\overrightarrow{OA}-λ\overrightarrow{OB}}|$的最小值是$\frac{{\sqrt{3}}}{2}$,則|AB|=1或$\sqrt{3}$,此時(shí)λ=$±\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x∈R,使$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=2,命題q:a=2是函數(shù)y=x2-ax+3在區(qū)間[1,+∞)遞增的充分但不必要條件.給出下列結(jié)論:①命題“p∧q”是真命題;
②命題“¬p∧q”是真命題;
③命題“¬p∨q”是真命題;
④命題“p∨¬q”是假命題
其中正確說法的序號(hào)是(  )
A.②④B.②③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=2sin(180°-x)+cos(-x)-sin(450°-x)+cos(90°+x).
(1)若f(α)=$\frac{2}{3}$•α∈(0°,180°),求tanα;
(2)若f(α)=2sinα-cosα+$\frac{3}{4}$,求sinα•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,拋物線C1:y2=2x和圓C2:(x-$\frac{1}{2}$)2+y2=$\frac{1}{4}$,其中p>0,直線l經(jīng)過C1的焦點(diǎn),依次交C1,C2于A,B,C,D四點(diǎn),則$\overrightarrow{AB}$•$\overrightarrow{CD}$的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知cos(x-$\frac{π}{4}$)=-$\frac{1}{3}$($\frac{5π}{4}$<x<$\frac{7π}{4}$),則sin2x-cos2x=(  )
A.$\frac{4\sqrt{2}-7}{9}$B.$\frac{-4\sqrt{2}-7}{9}$C.$\frac{4-7\sqrt{2}}{9}$D.$\frac{-4-7\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=sin(ωx)(ω為正整數(shù))在區(qū)間(-$\frac{π}{6}$,$\frac{π}{12}$)上不單調(diào),則ω的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知角α的終邊過點(diǎn)P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,則m的值為$\frac{1}{2}$,sinα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.平羅中學(xué)從高二年級(jí)參加生物考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六組[40,50),[50,60),…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求成績(jī)落在[70,80)上的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

同步練習(xí)冊(cè)答案