【題目】若函數(shù)f(x)=x2﹣bx+3.
(1)若函數(shù)f(x)為R上的偶函數(shù),求b的值.
(2)若函數(shù)f(x)在(﹣∞,2]上單調(diào)遞減,求b的取值范圍.

【答案】
(1)解:若函數(shù)f(x)為R上的偶函數(shù),

則f(﹣x)=f(x)恒成立,

即x2+bx+3=x2﹣bx+3恒成立,

解得:b=0


(2)解:函數(shù)f(x)=x2﹣bx+3的圖象是開口朝上,且以直線x= 為對(duì)稱軸的拋物線,

若函數(shù)f(x)在(﹣∞,2]上單調(diào)遞減,

≥2,

解得b≥4


【解析】(1)若函數(shù)f(x)為R上的偶函數(shù),則f(﹣x)=f(x)恒成立,解得b的值.(2)若函數(shù)f(x)在(﹣∞,2]上單調(diào)遞減,則 ≥2,解得b的取值范圍.
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的判斷方法和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)記函數(shù)的兩個(gè)零點(diǎn)分別為,且.已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: (a>0,b>0)過點(diǎn)A(1,0),且離心率為
(1)求雙曲線C的方程;
(2)已知直線x﹣y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣5x+6=0},B={x|mx﹣1=0},且A∩B=B,求由實(shí)數(shù)m所構(gòu)成的集合M,并寫出M的所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列冪函數(shù)在(﹣∞,0)上為減函數(shù)的是 (
A.
B.
C.y=x3
D.y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,f(x)與g(x)是同一函數(shù)的一組是(
A.f(x)=|x|,g(x)=
B.f(x)=x,g(x)=( 2
C.f(x)= ,g(x)=x+1
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】異面直線a,b成60°,直線c⊥a,則直線b與c所成的角的范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知z為復(fù)數(shù),ω=z+ 為實(shí)數(shù),
(1)當(dāng)﹣2<ω<10,求點(diǎn)Z的軌跡方程;
(2)當(dāng)﹣4<ω<2時(shí),若u= (α>0)為純虛數(shù),求:α的值和|u|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,且對(duì)任意的n∈N* , 均有an , Sn , 成等差數(shù)列,則an=

查看答案和解析>>

同步練習(xí)冊(cè)答案