16.已知ω>0,函數(shù)f(x)=$\frac{\sqrt{2}}{2}$(sinωx+cosωx)在($\frac{π}{2}$,π)上單調(diào)遞減,則實(shí)數(shù)ω的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

分析 求出f(x)的單調(diào)減區(qū)間A,令($\frac{π}{2}$,π)⊆A,解出ω的范圍.

解答 解:f(x)=$\frac{\sqrt{2}}{2}$(sinωx+cosωx)=sin(ωx+$\frac{π}{4}$),
∴$\frac{π}{2}+2kπ$≤ωx+$\frac{π}{4}$≤$\frac{3π}{2}+2kπ$,函數(shù)f(x)單調(diào)遞減,
$\frac{π}{4ω}+\frac{2kπ}{ω}≤x≤\frac{5π}{4ω}+\frac{2kπ}{ω}$,k∈Z,函數(shù)f(x)單調(diào)遞減,

$\left\{\begin{array}{l}{\frac{π}{4ω}+\frac{2kπ}{ω}≤\frac{π}{2}}\\{\frac{5π}{4ω}+\frac{2kπ}{ω}≥π}\end{array}\right.$,解得$\frac{1}{2}$+4k≤ω≤$\frac{5}{4}$+2k,k∈Z,
故選:A.

點(diǎn)評(píng) 本題考查了三角函數(shù)的單調(diào)性與單調(diào)區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知${({\sqrt{x}+\frac{1}{{2\root{4}{x}}}})^n}$的展開式中,前三項(xiàng)系數(shù)成等差數(shù)列.
(1)求第三項(xiàng)的二項(xiàng)式系數(shù)及項(xiàng)的系數(shù);
(2)求含x項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i2=-1,復(fù)數(shù)z=i(1-i),則|z|=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)fM(x)的定義域?yàn)镽,且定義如下:fM(x)=$\left\{\begin{array}{l}{x,x∈M}\\{\frac{1}{x},x∉M}\end{array}\right.$(M是實(shí)數(shù)集R的非空真子集),若A={x||x-1|≤2},B={x|-1≤x<1},則F(x)=$\frac{2{f}_{A∪B}(x)+1}{{f}_{A}(x)+{f}_{B}(x)+1}$的最大值為$\frac{21}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)y=ax2+bx+c,其中a,b,c∈{0,1,2,3,4},則不同的二次函數(shù)的個(gè)數(shù)共有( 。
A.125B.15C.100D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.從0,1,2,3,4,這五個(gè)數(shù)字中任取3個(gè)組成空間直角坐標(biāo),那么一共有多少個(gè)不同的坐標(biāo)60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.用1,2,3三個(gè)數(shù)字組成一個(gè)五位數(shù),要求相鄰的位置的數(shù)字不能相同,則不同的五位數(shù)共有42種(以數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某調(diào)查機(jī)構(gòu)從某縣農(nóng)村淘寶服務(wù)網(wǎng)點(diǎn)中隨機(jī)抽取20個(gè)網(wǎng)點(diǎn)作為樣本進(jìn)行元旦期間網(wǎng)購金額(單位:萬元)的調(diào)查.獲得的所有樣本數(shù)據(jù)按照區(qū)間[0,5],(5,10],(10,15],(15,20],(20,25]進(jìn)行分組,得到如圖所示的頻率直方圖
(1)根據(jù)樣本數(shù)據(jù),估計(jì)樣本中網(wǎng)購金額的平均值;(注:設(shè)樣本數(shù)據(jù)第i組的頻率為pi,第i組區(qū)間的中點(diǎn)值為xi(i=1,2,3,4,5),則樣本數(shù)據(jù)的平均值為X=x1p1+x2p2+x3p3+x4p4+x5p5
(2)若網(wǎng)購金額在(15,25]的服務(wù)網(wǎng)點(diǎn)定義為優(yōu)秀網(wǎng)點(diǎn),其余為非優(yōu)秀服務(wù)網(wǎng)點(diǎn),從20個(gè)服務(wù)網(wǎng)點(diǎn)中任選2個(gè),記ξ表示選到優(yōu)秀網(wǎng)點(diǎn)的個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x∈Z|x2-7x+10≤0},B={x|$\frac{1}{1-x}$∈A},則A,B中的所有元素之積為(  )
A.2B.6C.24D.120

查看答案和解析>>

同步練習(xí)冊(cè)答案