(2007•茂名二模)已知圓柱半徑是2,則是一個(gè)與圓柱的軸成45°角的平面截圓柱面所得截痕曲線的離心率是 .

 

【解析】

試題分析:利用已知條件,求出題意的長(zhǎng)半軸,短半軸,然后求出半焦距,即可求出題意的離心率.

【解析】
∵底面半徑是2的圓柱被與底面成45°的平面所截,其截口是一個(gè)橢圓,

則這個(gè)橢圓的短半軸為:2,長(zhǎng)半軸為=2,

∵a2=b2+c2,∴c=2,

∴橢圓的離心率為:e==

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習(xí)卷(解析版) 題型:選擇題

若一個(gè)變換所對(duì)應(yīng)的矩陣是,則拋物線y2=﹣4x在這個(gè)變換下所得到的曲線的方程是( )

A.y2=4x B.y2=x C.y2=﹣16x D.y2=16x

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:填空題

已知復(fù)數(shù)乘法(x+yi)(cosθ+isinθ)(x,y∈R,i為虛數(shù)單位)的幾何意義是將復(fù)數(shù)x+yi在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)(x,y)繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)θ角,則將點(diǎn)(6,4)繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到的點(diǎn)的坐標(biāo)為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

曲線x2﹣y2=1經(jīng)過伸縮變換T得到曲線=1,那么直線x﹣2y+1=0經(jīng)過伸縮變換T得到的直線方程為( )

A.2x﹣3y+6=0 B.4x﹣6y+1=0 C.3x﹣8y+12=0 D.3x﹣8y+1=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

(2011•寧德模擬)將雙曲線x2﹣y2=2繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°后可得到雙曲線y=.據(jù)此類推可求得雙曲線的焦距為( )

A.2 B.2 C.4 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題

底面直徑為10的圓柱被與底面成60°的平面所截,截口是一個(gè)橢圓,該橢圓的長(zhǎng)軸長(zhǎng) ,短軸長(zhǎng) ,離心率為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:選擇題

工人師傅在如圖1的一塊矩形鐵皮上畫一條曲線,沿曲線剪開,將所得到的兩部分卷成圓柱狀,如圖2,然后將其對(duì)接,可做成一個(gè)直角的“拐脖”,如圖3.工人師傅所畫的曲線是( )

A.一段圓弧 B.一段拋物線 C.一段雙曲線 D.一段正弦曲線

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題

(2014•黃岡模擬)已在點(diǎn)C在圓O的直徑BE的延長(zhǎng)線上,直線CA與圓O相切于點(diǎn)A,∠ACB的平分線分別交AB、AE于點(diǎn)D、F,則∠ADF= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題

如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于D,且CO=CD,則∠PCA=( )

A.30° B.45° C.60° D.67.5°

 

查看答案和解析>>

同步練習(xí)冊(cè)答案