分析 (1)將函數(shù)進(jìn)行化簡(jiǎn),再利用周期公式求ω的值.
(2)當(dāng)x在區(qū)間$[{0,\frac{5π}{6}}]$上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求單調(diào)性.
解答 解:函數(shù)$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$.
化簡(jiǎn)得Lf(x)=4cosωx($\frac{1}{2}$cosωx-$\frac{\sqrt{3}}{2}$sinωx)=2cos2ωx-$\sqrt{3}$sin2ωx=1+cos2ωx-$\sqrt{3}$sin2ωx=2cos(2ωx$+\frac{π}{3}$)+1.
(1)因?yàn)楹瘮?shù)$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$的最小正周期為π,即T=$\frac{2π}{2ω}=π$,
解得:ω=1,
則:f(x)=2cos(2x$+\frac{π}{3}$)+1.
故得ω的值為1,
(2)由(1)可得f(x)=2cos(2x$+\frac{π}{3}$)+1.
當(dāng)x在區(qū)間$[{0,\frac{5π}{6}}]$上時(shí),故得:$\frac{π}{3}≤2x+\frac{π}{3}≤2π$,
當(dāng)$\frac{π}{3}$$≤2x+\frac{π}{3}≤π$時(shí),即$0≤x≤\frac{π}{3}$時(shí),函數(shù)f(x)=2cos(2x$+\frac{π}{3}$)+1為減函數(shù).
當(dāng)π$≤2x+\frac{π}{3}≤2π$時(shí),即$\frac{π}{3}≤x≤\frac{5π}{6}$時(shí),函數(shù)f(x)=2cos(2x$+\frac{π}{3}$)+1為增函數(shù).
所以,函數(shù)f(x)=2cos(2x$+\frac{π}{3}$)+1為減區(qū)間為$[0,\frac{π}{3}]$,增區(qū)間為$[\frac{π}{3},\frac{5π}{6}]$.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=5${\;}^{\frac{1}{2-x}}$ | B. | y=log2(3x+2) | C. | y=$\sqrt{1-{2}^{x}}$ | D. | y=($\frac{1}{3}$)1-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com