分析 (1)利用f(1)=f(4)求出b的值,利用f(x)=$\frac{{x}^{2}+ax+b}{x}$(x≠0)為奇函數(shù),得f(x)+f(-x)=0對(duì)x≠0恒成立,求出a的值;
(2)根據(jù)函數(shù)單調(diào)性,即可得出結(jié)論;
(3)分別求出滿足兩個(gè)條件的實(shí)數(shù)k的取值范圍,即可得出結(jié)論
解答 解:(1)由f(1)=f(4)得1+a+b=$\frac{16+4a+b}{4}$,
解得b=4.…(2分)
由f(x)=$\frac{{x}^{2}+ax+b}{x}$(x≠0)為奇函數(shù),得f(x)+f(-x)=0對(duì)x≠0恒成立,
即$\frac{{x}^{2}+ax+b}{x}$+$\frac{{x}^{2}-ax+b}{-x}$=2a=0,
所以a=0.…(4分)
證明:(2)由(1)知,f(x)=x+$\frac{4}{x}$.
證法一:任取x1,x2∈(0,2],且x1<x2,
f(x1)-f(x2)=(x1+$\frac{4}{{x}_{1}}$)-(x2+$\frac{4}{{x}_{2}}$)=(x1-x2) $\frac{{x}_{1}{x}_{2}-4}{{x}_{1}{x}_{2}}$,…(6分)
∵0<x1<x2≤2,
∴x1-x2<0,x1x2>0,x1x2-4<0,
∴f(x1)-f(x2)>0,f(x1)>f(x2),
所以,函數(shù)f(x)在區(qū)間(0,2]上單調(diào)遞減.…(9分)
證法二:∵f′(x)=1-$\frac{4}{{x}^{2}}$,…(6分)
∵x∈(0,2]時(shí),f′(x)≤0恒成立,
所以,函數(shù)f(x)在區(qū)間(0,2]上單調(diào)遞減.…(9分)
解:(3)對(duì)于條件①:由(2)可知函數(shù)f(x)在x∈(0,+∞)上有最小值f(2)=4.
故若f(x)+$\frac{2k}{3}$>0對(duì)x∈(0,+∞)恒成立,則需f(x)min>-$\frac{2k}{3}$,
則4>-$\frac{2k}{3}$,∴k>-6.…(10分)
對(duì)于條件②:由(2)可知函數(shù)f(x)在(-∞,-2)單調(diào)遞增,在[-2,0)單調(diào)遞減,
∴函數(shù)f(x)在[-6,-2]單調(diào)遞增,在[-2,-1]單調(diào)遞減,
又f(-6)=-$\frac{20}{3}$,f(-2)=-4,f(-1)=-5,
所以函數(shù)f(x)在[-6,-1]上的值域?yàn)閇-$\frac{20}{3}$,-4],
若方程f(x)=k在[-6,-1]有解,則需-$\frac{20}{3}$≤k≤-4.…(12分)
若同時(shí)滿足條件①②,
則需-6<k≤-4.
答:當(dāng)-6<k≤-4時(shí),條件①②同時(shí)滿足.…(14分)
點(diǎn)評(píng) 本題考查函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性與值域,考查學(xué)生分析解決問(wèn)題的能力,難度中等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 焦點(diǎn)在x軸上的橢圓 | B. | 焦點(diǎn)在y軸上的橢圓 | ||
C. | 圓 | D. | 無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x+y+2=0 | B. | 2x+y-5=0 | C. | x+2y-2=0 | D. | x-2y+7=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com