已知直線的方程為
,數(shù)列
滿足
,其前
項(xiàng)和為
,點(diǎn)
在直線
上.
(1)求數(shù)列的通項(xiàng)公式;
(2)在和
之間插入
個(gè)數(shù),使這
個(gè)數(shù)組成公差為
的等差數(shù)列,令
,試證明
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的各項(xiàng)均為正數(shù),
,
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)
.證明:
為等差數(shù)列,并求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)等差數(shù)列的前
項(xiàng)和為
,若
,且
成等比數(shù)列.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記的前
項(xiàng)和為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前
項(xiàng)和記為
,
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)等差數(shù)列的前
項(xiàng)和
有最大值,且
,又
、
、
成等比數(shù)列,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意
,都有
,其中
為數(shù)列
的前
項(xiàng)和。
(1)求證數(shù)列是等差數(shù)列;
(2)若數(shù)列的前
項(xiàng)和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列中,
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)當(dāng)取最大值時(shí)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前
項(xiàng)和為
.且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列
滿足:
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前
項(xiàng)和為
,公差
,
,且
成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前
項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是正數(shù)列組成的數(shù)列,
,且點(diǎn)
在函數(shù)
的圖像上,
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足
,
,求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com