已知曲線C的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t是參數(shù)).
(1)將曲線C的極坐標(biāo)方程和直線L參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線L與曲線C相交于M、N兩點(diǎn),且,求實(shí)數(shù)m的值.
(1),;(2)

試題分析:
解題思路:(1)利用極坐標(biāo)方程、參數(shù)方程、普通方程的互化公式化簡(jiǎn)即可;(2)利用,求得圓心到直線的距離,再利用點(diǎn)到直線的距離公式求值.
規(guī)律總結(jié):涉及直線與曲線的極坐標(biāo)方程、參數(shù)方程的問題,要注意先將極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的相互轉(zhuǎn)化,再利用有關(guān)知識(shí)進(jìn)行求解.
試題解析:(1)曲線C的普通方程為      
直線L的普通方程為               
(2)因?yàn)榍C:                    
所以,圓心到直線的距離是
                       
所以.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

自極點(diǎn)O作射線與直線相交于點(diǎn)M,在OM上取一點(diǎn)P,使得,求點(diǎn)P的軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線l的參數(shù)方程為
x=1+2t
y=1-2t
(t
為參數(shù)),圓C:
x=2cosα
y=2sinα
為參數(shù)).
(Ⅰ)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(Ⅱ)直線l交圓C于A,B兩點(diǎn),求AB弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

參數(shù)方程
x=3cosθ
y=3sinθ
(-
π
2
≤θ≤
π
2
)
表示的圖形是(  )
A.以原點(diǎn)為圓心,半徑為3的圓
B.以原點(diǎn)為圓心,半徑為3的上半圓
C.以原點(diǎn)為圓心,半徑為3的下半圓
D.以原點(diǎn)為圓心,半徑為3的右半圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓心為C的圓經(jīng)過點(diǎn)(1,1)和(2,-2),且圓心C在直線l:x-y+1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)A是圓心為C的圓上動(dòng)點(diǎn),B(2,1),求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程 表示的曲線是( )
A.一條直線B.兩條射線C.一條線段D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系點(diǎn)為極點(diǎn),軸正方向?yàn)闃O軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,得直線的極坐標(biāo)方程為.求直線與曲線交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在曲線C1:(θ為參數(shù),0≤θ<2π)上求一點(diǎn),使它到直線C2:(t為參數(shù))的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,曲線為參數(shù))的普通方程為___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案