已知拋物線上一點P到y(tǒng)軸的距離為5,則點P到焦點的距離為(    )
A.5B.6C.7D.8
C

試題分析:因為拋物線的焦點坐標為(2,0),因為P(5,y)到焦點距離等于到準線的距離,又因為拋物線的準線方程為.所以P點到準線的距離為5+2="7." 即點P到焦點的距離為7.故選C.本小題關(guān)鍵是拋物線的定義的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點為,求弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知點,過點的直線與過點的直線相交于點,設(shè)直線的斜率為,直線的斜率為,如果,求點的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為,橢圓上的點滿足,且△的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右頂點分別為,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個焦點為,過點且垂直于長軸的直線被橢圓截得的弦長為為橢圓上的四個點。
(Ⅰ)求橢圓的方程;
(Ⅱ)若,,求四邊形的面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(ab>0)的離心率為,一條準線lx=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標原點,Ml上的點,F為橢圓C的右焦點,過點FOM的垂線與以OM為直徑的圓D交于P,Q兩點.
①若PQ,求圓D的方程;
②若Ml上的動點,求證點P在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點P到點的距離與它到直線y+3=0的距離相等,則P的軌跡方程為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線交拋物線兩點.若該拋物線上存在點,使得,則的取值范圍為_________.

查看答案和解析>>

同步練習(xí)冊答案