已知直線交拋物線兩點(diǎn).若該拋物線上存在點(diǎn),使得,則的取值范圍為_(kāi)________.

試題分析:由題意知,設(shè),由,
解得:(舍) 或,由的取值范圍為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長(zhǎng)等于的短軸長(zhǎng)。軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)的直線相交于點(diǎn),直線分別與相交于點(diǎn)。

(1)求的方程;
(2)求證:。
(3)記的面積分別為,若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓與橢圓中心在原點(diǎn),焦點(diǎn)均在軸上,且離心率相同.橢圓的長(zhǎng)軸長(zhǎng)為,且橢圓的左準(zhǔn)線被橢圓截得的線段長(zhǎng)為,已知點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn).

⑴求橢圓與橢圓的方程;
⑵設(shè)點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的下頂點(diǎn),若直線剛好平分,求點(diǎn)的坐標(biāo);
⑶若點(diǎn)在橢圓上,點(diǎn)滿足,則直線與直線的斜率之積是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于點(diǎn),.
(Ⅰ)若(點(diǎn)在第一象限),求直線的方程;
(Ⅱ)求證:為定值(點(diǎn)為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知過(guò)點(diǎn)的橢圓的右焦點(diǎn)為,過(guò)焦點(diǎn)且與軸不重合的直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,直線,分別交橢圓的右準(zhǔn)線,兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為,試求直線的方程;
(3)記,兩點(diǎn)的縱坐標(biāo)分別為,試問(wèn)是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)作方向向量的直線交橢圓、兩點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線上一點(diǎn)P到y(tǒng)軸的距離為5,則點(diǎn)P到焦點(diǎn)的距離為(    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓內(nèi)有一點(diǎn),過(guò)點(diǎn)的弦恰好以為中點(diǎn),那么這條弦所在直線的斜率為     ,直線方程為      

查看答案和解析>>

同步練習(xí)冊(cè)答案