【題目】以5cm為單位長度作單位圓,分別作出,,,,角的正弦線余弦線和正切線,量出它們的長度,寫出這些角的正弦余弦和正切的近似值,再使用科學計算器求這些角的正弦余弦和正切,并進行比較.
【答案】答案見解析.
【解析】
在單位圓作出這此角的三角函數線,回答結論.
按題意,作出,,,,角的正弦線余弦線和正切線,如圖,
三角函數線:
10° | 20° | 50° | 220° | 320° | |
sin | |||||
cos | |||||
tan |
三角函數線長度
10° | 20° | 50° | 220° | 320° | |
sin | 0.85 | 1.70 | 3.85 | 3.20 | 3.20 |
cos | 4.90 | 4.70 | 3.20 | 3.85 | 3.85 |
tan | 0.90 | 1.80 | 5.95 | 4.20/span> | 4.20 |
三角函數值
10° | 20° | 50° | 220° | 320° | |
sin | 0.17 | 0.34 | 0.77 | -0.64 | -0.64 |
cos | 0.98 | 0.94 | 0.64 | -0.77 | 0.77 |
tan | 0.18 | 0.36 | 1.19 | 0.84 | -0.84 |
與計算器計算結果幾乎相同.
科目:高中數學 來源: 題型:
【題目】已知A(-2,0),B(2,0)為橢圓C的左、右頂點,F為其右焦點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線AP與橢圓在點B處的切線交于點D,當點P在橢圓上運動時,求證:以BD為直徑的圓與直線PF恒相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】寫出下列命題的否定,并判斷所得命題的真假:
(1);
(2)有的三角形是等邊三角形;
(3)有一個偶數是素數
(4)任意兩個等邊三角形都相似;
(5).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓C過定點F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點,且線段PQ的中心點坐標(1,1),求|PQ|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某個體戶計劃經銷A,B兩種商品,據調查統(tǒng)計,當投資額為x(x≥0)萬元時,在經銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投資額為零時收益為零.
(1)求a,b的值;
(2)如果該個體戶準備投入5萬元經銷這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為一個摩天輪示意圖。該摩天輪圓半徑為4.8m,圓上最低點與地面距離為0.8m,60s轉動一周.圖中OA與地面垂直。以O為始邊,逆時針轉動0角到OB設B點與地面的距離為hm.
(1)求h與的函數解析式;
(2)設從OA開始轉動,經過ts到達OB,求h與t的函數解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若f (x)在區(qū)間(-∞,2)上為單調遞增函數,求實數a的取值范圍;
(2)若a=0,x0<1,設直線y=g(x)為函數f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,沒售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品,現以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤.
(Ⅰ)視分布在各區(qū)間內的頻率為相應的概率,求;
(Ⅱ)將表示為的函數,求出該函數表達式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值)代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如,則取的概率等于市場需求量落入的頻率),求的分布列及數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com