精英家教網 > 高中數學 > 題目詳情

【題目】5cm為單位長度作單位圓,分別作出,,,,角的正弦線余弦線和正切線,量出它們的長度,寫出這些角的正弦余弦和正切的近似值,再使用科學計算器求這些角的正弦余弦和正切,并進行比較.

【答案】答案見解析.

【解析】

在單位圓作出這此角的三角函數線,回答結論.

按題意,作出,,,,角的正弦線余弦線和正切線,如圖,

三角函數線:

10°

20°

50°

220°

320°

sin

cos

tan

三角函數線長度

10°

20°

50°

220°

320°

sin

0.85

1.70

3.85

3.20

3.20

cos

4.90

4.70

3.20

3.85

3.85

tan

0.90

1.80

5.95

4.20/span>

4.20

三角函數值

10°

20°

50°

220°

320°

sin

0.17

0.34

0.77

-0.64

-0.64

cos

0.98

0.94

0.64

-0.77

0.77

tan

0.18

0.36

1.19

0.84

-0.84

與計算器計算結果幾乎相同.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知A(-2,0),B(2,0)為橢圓C的左、右頂點,F為其右焦點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為。

(Ⅰ)求橢圓C的方程;

(Ⅱ)直線AP與橢圓在點B處的切線交于點D,當點P在橢圓上運動時,求證:以BD為直徑的圓與直線PF恒相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】寫出下列命題的否定,并判斷所得命題的真假:

1;

2)有的三角形是等邊三角形;

3)有一個偶數是素數

4)任意兩個等邊三角形都相似;

5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓C過定點F2,0),且與直線x=-2相切,圓心C的軌跡為E,

1)求圓心C的軌跡E的方程;

2)若直線lEP,Q兩點,且線段PQ的中心點坐標(1,1),求|PQ|

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某個體戶計劃經銷A,B兩種商品,據調查統(tǒng)計,當投資額為x(x≥0)萬元時,在經銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投資額為零時收益為零.

(1)a,b的值;

(2)如果該個體戶準備投入5萬元經銷這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖為一個摩天輪示意圖。該摩天輪圓半徑為4.8m,圓上最低點與地面距離為0.8m,60s轉動一周.圖中OA與地面垂直。以O為始邊,逆時針轉動0角到OBB點與地面的距離為hm.

1)求h的函數解析式;

(2)設從OA開始轉動,經過ts到達OB,求ht的函數解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若f (x)在區(qū)間(-∞,2)上為單調遞增函數,求實數a的取值范圍;

(2)若a=0,x0<1,設直線y=g(x)為函數f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著經濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,沒售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品,現以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤.

(Ⅰ)視分布在各區(qū)間內的頻率為相應的概率,求;

Ⅱ)將表示為的函數,求出該函數表達式;

Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如,則取的概率等于市場需求量落入的頻率),的分布列及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三個頂點到平面的距離分別是3,3,6,則其重心到平面的距離為__________.(寫出所有可能值)

查看答案和解析>>

同步練習冊答案