【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺(tái).已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),沒售出1噸該商品可獲利潤(rùn)0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷售季度籌備了130噸該商品,現(xiàn)以(單位:噸,)表示下一個(gè)銷售季度的市場(chǎng)需求量,(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤(rùn).
(Ⅰ)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;
(Ⅱ)將表示為的函數(shù),求出該函數(shù)表達(dá)式;
(Ⅲ)在頻率分布直方圖的市場(chǎng)需求量分組中,以各組的區(qū)間中點(diǎn)值(組中值)代表該組的各個(gè)值,并以市場(chǎng)需求量落入該區(qū)間的頻率作為市場(chǎng)需求量取該組中值的概率(例如,則取的概率等于市場(chǎng)需求量落入的頻率),求的分布列及數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】分析:(Ⅰ)根據(jù)頻率分布直方圖和互斥事件的概率公式求解.(Ⅱ)結(jié)合題意用分段函數(shù)的形式表示與的關(guān)系.(Ⅲ)先確定的所有可能取值為45,53,61,65,然后分別求出相應(yīng)的概率,進(jìn)而可得分布列,最后求出期望.
詳解:(Ⅰ)根據(jù)頻率分布直方圖及互斥事件的概率公式可得:
.
(Ⅱ)當(dāng)時(shí),,
當(dāng)時(shí),.
所以
(Ⅲ)由題意及(Ⅱ)可得:
當(dāng)時(shí),,;
當(dāng)時(shí),,;
當(dāng)時(shí),,;
當(dāng)時(shí),,.
所以的分布列為:
45 | 53 | 61 | 65 | |
0.1 | 0.2 | 0.3 | 0.4 |
∴萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以5cm為單位長(zhǎng)度作單位圓,分別作出,,,,角的正弦線余弦線和正切線,量出它們的長(zhǎng)度,寫出這些角的正弦余弦和正切的近似值,再使用科學(xué)計(jì)算器求這些角的正弦余弦和正切,并進(jìn)行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)(題文)已知橢圓的離心率為,過右焦點(diǎn)且斜率為1的直線交橢圓于A,B兩點(diǎn), N為弦AB的中點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求直線ON的斜率;
(2)求證:對(duì)于橢圓上的任意一點(diǎn)M,都存在,使得成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù))
(Ⅰ)求直線的直角坐標(biāo)方程和曲線的普通方程;
(Ⅱ)若過且與直線垂直的直線與曲線相交于兩點(diǎn),,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品近一個(gè)月內(nèi)(30天)預(yù)計(jì)日銷量(件)與時(shí)間t(天)的關(guān)系如圖1所示,單價(jià)(萬元/件)與時(shí)間t(天)的函數(shù)關(guān)系如圖2所示,(t為整數(shù))
(1)試寫出與的解析式;
(2)求此商品日銷售額的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于與不同四點(diǎn),直線的斜率滿足.已知當(dāng)與軸重合時(shí),,.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)坐標(biāo)并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】試題分析:(1)當(dāng)與軸重合時(shí),垂直于軸,得,得,從而得橢圓的方程;(2)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點(diǎn)的軌跡是橢圓,從而求得定點(diǎn)和點(diǎn).
試題解析:當(dāng)與軸重合時(shí),, 即,所以垂直于軸,得,,, 得,橢圓的方程為.
焦點(diǎn)坐標(biāo)分別為, 當(dāng)直線或斜率不存在時(shí),點(diǎn)坐標(biāo)為或;
當(dāng)直線斜率存在時(shí),設(shè)斜率分別為, 設(shè)由, 得:
, 所以:,, 則:
. 同理:, 因?yàn)?/span>
, 所以, 即, 由題意知, 所以
, 設(shè),則,即,由當(dāng)直線或斜率不存在時(shí),點(diǎn)坐標(biāo)為或也滿足此方程,所以點(diǎn)在橢圓上.存在點(diǎn)和點(diǎn),使得為定值,定值為.
考點(diǎn):圓錐曲線的定義,性質(zhì),方程.
【方法點(diǎn)晴】本題是對(duì)圓錐曲線的綜合應(yīng)用進(jìn)行考查,第一問通過兩個(gè)特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個(gè)角度出發(fā),把坐標(biāo)化,求得點(diǎn)的軌跡方程是橢圓,從而求得存在兩定點(diǎn)和點(diǎn).
【題型】解答題
【結(jié)束】
21
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個(gè)零點(diǎn)為,記,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列四個(gè)命題:
①等差數(shù)列一定是單調(diào)數(shù)列;
②等差數(shù)列的前項(xiàng)和構(gòu)成的數(shù)列一定不是單調(diào)數(shù)列;
③已知等比數(shù)列的公比為,若,則數(shù)列是單調(diào)遞增數(shù)列.
④記等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的最大值一定在處達(dá)到.
其中正確的命題有_____.(填寫所有正確的命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com